同位素 229 Th 是已知的唯一一种在几电子伏特能量范围内具有激发态 229m Th 的原子核,这是原子价壳层中电子的典型跃迁能量,但比常见的核激发能低四个数量级。人们提出了许多利用这种独特核系统的应用,该系统可通过光学方法实现。其中最有希望的是一种性能优于现有原子计时器的高精度核钟。我们在此介绍 229m Th 2+ 超精细结构的激光光谱研究,得出基本核特性的值,即磁偶极矩和电四极矩以及核电荷半径。继最近直接检测到这种长期寻找的异构体之后,我们现在对其核结构进行了详细的了解,并提出了一种非破坏性光学检测方法。
摘要:在统计程序TALYS v1.96和质子中子准粒子随机相近似(pn-QRPA)模型框架内,研究了Mo同位素的中子俘获率和随温度变化的恒星β衰变率。在统计程序TA-LYS v1.96框架内,基于现象学核能级密度模型和γ强度函数,分析了Mo(n,γ)Mo辐射俘获过程的麦克斯韦平均截面(MACS)和中子俘获率。基于模型的MACS计算与现有测量数据相当。在pn-QRPA模型框架内,研究了恒星弱相互作用率对不同密度和温度的敏感性。特别关注了衰变核(Mo)中热填充激发态对电子发射和正电子俘获率的影响。此外,我们比较了中子俘获率和恒星β衰变率,发现无论在低温还是高温下,中子俘获率都高于恒星β衰变率。
哈密顿量、基态和激发态、时间演化。量子绝热定理。介绍使用绝热演化实现量子计算的思想。量子计算的其他模型、绝热量子计算概述和与门模型的等价性。Deutch-Josza 算法的绝热版本。绝热量子计算 (AQC) 与门模型的等价性(在多项式开销内)。NP 完全问题:组合问题及其归结为 3-可满足性 (3-SAT) 问题。3-SAT 和量子退火的 AQC 算法。D-Wave 的 Leap 概述、安装、教程和使用方法。示例代码:为 2 个量子位、3 位 3-SAT 构建 QUBO。链接和小嵌入到设备的架构中。小嵌入工具。使用量子退火解决图优化问题;应用于顶点覆盖和地图着色问题。
通过哺乳动物组织的光线有限,光动力疗法作为癌症治疗程序的广泛应用受到阻碍。由于光敏化的细胞毒性单线氧需要对肿瘤 - 定位光敏剂的效率激发,因此只能在辐照组织的前几米米中保证Pho-Todyanic作用。在这项工作中,我们证明了持续发光的现象,即从某些金属离子激发态(带有Crys-Tal的缺陷充当能量陷阱)的发射,可以提供替代的激发可能性。因此,持续发光的纳米肌会通过肉体匹配的身体敏化剂(FRET =fçrster共振能量传递)功能化,然后在给药到细胞培养或生物体之前就被兴奋。发现该系统继续产生单线氧气无限的位置,而无需连续的光子激发。
进行了地球元素。➢用于量子计算机,光学晶格时钟,天体物理学和等离子体诊断。➢相对论杂乱,处理问题和昂贵的工具等问题。➢前景,例如量子技术,更好的原子钟和新材料。摘要:这种新方法预测了原子数的碱性地球元素的激发状态,从4(Beryllium,be)到88(Radium,ra),这是基于碱接地元素的第二个科学和技术领域。它们具有简单的电子结构(NS²),其特定的激发特征在广泛的领域中找到了应用,从光谱和量子计算到精确定时管理和血浆诊断。在过去的几十年中,理论和实验研究付出了很多努力,以研究和理解其激动的状态。计算机化的变化,例如使用许多人体扰动理论,密度功能理论(DFT)和其他相对论校正,已经显着改善了激发态的转变概率,寿命和振荡者强度的预测。其他计算方法(例如配置相互作用(CI)和耦合簇(CC)理论)提供了有关电子相关性和精细结构分裂的更多信息,以提供更大的碱性地球元素,例如钡和radium和radium。本评论论文重点介绍了碱金属激发状态的最新进步,当前趋势和新技术。应用高分辨率光谱法(如激光诱导的荧光(LIF)光电离和两光子效率)的应用,但是可以更好地确定能级,衰减速率和自动离电现象。超快速激光器和可调激光系统的进步有助于实时评估过渡激发现象。利用现代技术,例如激光冷却和捕获,可以对激发状态进行显着操纵,从而在量子信息技术和原子钟中显着进步。激发态在碱 - 地球物种中的应用是多种多样的。基于光原子时钟基于光原子时钟的过渡已开发出来,以确定一天中的新标准,以无法实现的准确性,从而质疑国际单位系统(SI)中第二个的定义。这些量子计算元素的亚稳态状态被视为Qubits,其量子特性被用来维持延长的相干时间并促进更容易的控制。此外
我们提出了一种在量子硬件上准备多体系统状态的有效方法,首先隔离单个量子数,然后利用时间演化来隔离能量。我们的方法最简单的形式只需要一个额外的辅助量子位。精确解的总演化时间与试验状态的光谱范围与最低激发态间隙的比率成正比,这比其他投影算法有了很大的改进,而且精度随着演化时间呈指数增长。由于特征值已知,隔离量子数是有效的,并且增加了间隙,从而缩短了所需的传播时间。算法的成功率或产生所需状态的概率是测量时间和相位的简单函数,并由原始状态与所需状态的平方重叠决定。我们给出了来自核壳模型和海森堡模型的示例。我们将此算法与以前的短演化时间算法进行了比较,并讨论了潜在的进一步改进。
图1(a)设备的示意图。将封装在两个HBN薄片(紫色)中的BLG薄片(黑色)组成的异质结构放在金属后门(BG,深橙色)上。分裂的门(SG,浅橙色)和手指门(FGS,浅橙色)通过绝缘氧化铝层分开。金属触点(黄色)用于检测传输电流。(b)设备的有限偏置光谱测量。数字𝑁表示库仑封锁区域中的电子职业。(c)3 rd,第4和第5次COULOMB钻石的放大,从中提取第一壳能量δ𝐸SH1。红色箭头指示与激发态相对应的过渡线。左下方示意图说明了前5个电子的壳结构。(d)分别从正面(上图)和负SD分支(下图)提取第4个电子的激发状态能量。
半导体量子点中的旋转是有希望的局部量子记忆,可以产生偏振化编码的光子簇状态,如开创性的Lindner和Rudolph方案[1]。然而,利用光学转变的极化程度受到共鸣激发方案的阻碍,这些方案被广泛用于获得高光子不明显。在这里我们表明,声子辅助激发(一种保持高度可区分性的方案)也允许完全利用极化的选择性光学转变来初始化并测量单个自旋状态。我们在低横向磁场中访问孔自旋系统的相干性,并在激发态的辐射发射过程或量子点基态下直接监测自旋倾向。我们报告的旋转状态检测功能为94。7±0。由光学选择规则和25±5 ns孔旋转相干时间授予的2%,证明了该方案和系统具有以十二个光子为单位的线性簇状态的潜力。
里德堡原子是处于主量子数 n 的高度激发态的原子,人们对其的研究已有一个多世纪 [1,2]。在过去二十年里,里德堡原子物理学,特别是在超低温下 [3-8],由于其“夸张”的特性,为一系列激动人心的发现做出了贡献。高度激发的价电子与原子核之间的巨大距离以及随之而来的松散结合,导致了巨大的电极化率以及与周围原子的强长程偶极-偶极和范德华 (vdW) 相互作用。由于原子间的 vdW 相互作用取决于它们的极化率(对于几乎与氢相似的里德堡原子,其尺度为 n7),因此可以证明 vdW 力的尺度为 n11。因此,使用 n 在 50–100 范围内的里德堡原子可以将相互作用能量提高 17 到 20 个数量级 [9]。
镁二聚体 (Mg 2 ) 的高能级振动态已被公认为超冷和碰撞现象研究中的重要系统,半个世纪以来,它的高能级一直未能通过实验表征。到目前为止,只有 Mg 2 的前 14 个振动态得到了实验解决,尽管有人提出基态势可能支持另外 5 个能级。在这里,我们基于最先进的耦合团簇和全组态相互作用计算,给出了 Mg 2 实验研究中涉及的基态和激发态电子态的高精度从头算势能曲线 20。我们的基态势明确证实了 19 个振动能级的存在,计算出的振转项值与可用的实验数据以及实验得出的数据之间的均方根偏差约为 1 cm −1。我们的计算重现了最新的激光诱导荧光光谱,并为实验检测以前未解析的振动能级提供了指导。一句话总结