1 哈佛大学分子与细胞生物学系,52 Oxford St.,剑桥,MA 02138,美国 2 高能物理部,史密森天体物理观测台,哈佛与史密森天体物理中心,60 Garden St,剑桥,MA 02138,美国 3 LRL-CAT,礼来公司,先进光子源,阿贡国家实验室,9700 S. Cass Avenue,莱蒙特,伊利诺伊州,60439,美国 4 钻石光源,哈威尔科学与创新园区,迪德科特,OX11 0DE,英国 5 哈佛大学纳米系统中心,11 Oxford St,LISE G40,剑桥,MA 02138,美国 6 蒙大拿州立大学地球科学系,226 Traphagen Hall,PO Box 173480,博兹曼,MT 59717,美国 7 PLEX 公司,275 Martine St.,美国马萨诸塞州福尔里弗 02723 100 室 通讯作者:Julie EM McGeoch;电子邮件:Julie.mcgeoch@cfa.harvard.edu
DSC 500PEGASUS®系统可以配备各种不同的熔炉,可容纳不同温度和施用范围-150°C和2000°C之间。银和钢炉可用于亚凸式温度范围。通过液氮冷却装置或涡流管实现了控制冷却。对于更高温度范围,SIC,PT,RH和石墨炉提供。与专用DSC传感器结合使用的铂和犀牛炉非常适合确定较高温度范围内的特定热容量。其用户友好的设计允许操作员轻松替换管子,从而最大程度地减少停机时间。
摘要。材料在塑造人类历史和文明中起着至关重要的作用,金属,聚合物,陶瓷和复合材料对科学技术的发展至关重要。在金属中,钢铁在制造行业中受到了优势和韧性的青睐。热处理可显着影响钢的材料特性。本研究采用PMI大师智能牛津OE(光学发射光谱法)进行组成分析,微观结构检查的光学显微镜以及用于硬度测试的Vickers方法。AISI 1040钢试样在720°C的消声炉中加热60分钟,然后在冷水(5°C)中淬火,室温水(30°C)和热水(70°C)。结果表明,在冷水中淬灭的标本表现出258.39 HV的最高硬度值,其微结构为45.45%珠光石和54.55%的铁矿。相比之下,在热水中淬灭的标本显示最低的硬性值为215.09 hv,其微结构由29.20%的珠光体和70.80%的铁素体组成。这些发现突出了淬灭温度对AISI 1040钢的硬度和微观结构特性的显着影响。
Ishii Hirohisa * 1 Kuramoto Hirohisa * 2 Koh Ishii Hirohisa Kuramoto Tauchi Takushi * 2 Yamamoto Yusuke * 3 Hiroyuki Tauchi Yusuke Yamamoto Wakana Tomohiro * 3 Yoshimura Jin * 3 Tomohiro Wakana Hitoshi Yoshimura
• 转化器干燥废物并驱除挥发物 • 当废物沿着炉排向下移动时,热气体注入其中 • 固体被气化并从上方排出 • 剩余的炭落到第二阶段 • 移动炉排在焚烧炉中很常见,具有经过验证的强大性能
9. Xu, Z.; Li, H.*; Liu, Y.; Wang, K.; Wang, H.; Ge, M.; Xie, J.; Li, J.; Wen, Z.; Pan, H.; Qu, S.; Liu,
摘要 颗石藻是现代海洋中最丰富的钙化生物,是许多海洋生态系统中重要的初级生产者。它们产生碳酸钙板(颗石藻)细胞覆盖层的能力在海洋生物地球化学和全球碳循环中发挥着重要作用。颗石藻还通过产生影响气候的气体二甲基硫醚在硫循环中发挥着重要作用。颗石藻研究的主要模式生物是 Emiliania huxleyi,现名为 Gephyrocapsa huxleyi。G. huxleyi 分布广泛,占据全球沿海和海洋环境,是现代海洋中最丰富的颗石藻。对 G. huxleyi 的研究已经确定了颗石藻生物学的许多方面,从细胞生物学到生态相互作用。从这个角度来看,我们总结了使用 G. huxleyi 取得的关键进展,并研究了这种模式生物的新兴研究工具。我们讨论了研究界需要采取的关键步骤,以推动 G. huxleyi 作为模式生物的发展,以及其他物种作为颗石藻生物学特定方面模型的适用性。
最令人担忧的领域仍然是使用的燃料和随之而来的维护成本。5、6、7 和 8 号机组设计为燃烧 HSI(高速柴油),但在 1989 年被改为燃烧炉油,它仍然是首选燃料,(与 HSD 的初始成本相比)。计划在明年将 5、6、7 和 8 号机组转换为天然气,但在保证有足够的天然气供应来运行整个工厂之前,炉油仍将是主要燃料。收到的炉油质量差,处理成本高。这些机组继续燃烧炉油将大大缩短热气路径组件的使用寿命,并需要更频繁地维护和更换零件。使用这种燃料是导致电站维护成本增加的最大因素。目前,WAPDA 整个维护备件预算的 50% 以上分配给了 Kot Addu 电站。
到2050年,在铁和钢铁行业中实现零净,需要从煤炭基技术转向低排放的生产。Global Energy Monitor的2024年全球钢铁厂跟踪器和全球爆炸炉追踪器数据表明,尽管朝着低排放的直接减少铁(DRI)和电动弧炉(EAF)生产朝着明显的转变,但爆炸炉(BF)的开发却是持续的,并且对气候和顶级开发者的风险呈现出独特的风险。在该国一级,中国保持了全球运营能力的巨大份额,但印度已成为所有即将到来的铁和钢厂中最大的开发商,这是煤炭基于煤炭的燃料基炉基氧气炉(BF-BOF)。考虑到这些趋势,该行业必须继续推动绿色钢铁,并且过渡计划必须转化为具体的行动。
