摘要:迫切需要改进治疗方法以更好地控制正在发生的 COVID-19 大流行。主要蛋白酶 M pro 在 SARS-CoV-2 复制中起着关键作用,因此成为抗病毒开发的一个有吸引力的靶点。我们寻求识别新型亲电弹头以有效共价抑制 M pro 。通过比较安装在普通支架上的一组弹头对 M pro 的功效,我们发现末端炔烃可以共价修饰 M pro 作为潜在弹头。我们的生化和 X 射线结构分析揭示了炔烃和 M pro 的催化半胱氨酸之间不可逆形成的乙烯基硫化物键。开发了基于炔烃抑制剂的可点击探针来测量目标参与、药物停留时间和脱靶效应。最好的含炔烃抑制剂在细胞感染模型中有效抑制了 SARS-CoV-2 感染。我们的研究结果凸显了炔烃作为潜在弹头的巨大潜力,可以靶向病毒及其他物质中的胱氨酸蛋白酶。■ 简介
碳通过晶格逐渐溶解,最初形成亚表面,最终形成块状碳化物相。[12,29] 对于炔烃半加氢反应,PdC x 相通过抑制烷烃的过度加氢,提高了烯烃的选择性。[12,13,18,22,29] 这种对选择性的影响是多方面的。首先,最上层阻止氢气在亚表面聚集。[13] 此外,现有溶解氢通过碳化物相到表面的流动性降低。[22,12] 最后,碳化物相增加了从进料中吸附更多碳氢化合物的能垒。[29] 在低转化率下,炔烃的表面毒化作用也是高选择性的原因。[18] 选择性提高的一些实例包括乙炔、炔丙和 1-戊炔的半加氢。 [12,22,28,29]
脂肪族烃:烷烃 - 命名法、异构现象、构象(仅乙烷)、物理性质、化学反应(包括卤化、燃烧和热解的自由基机理)。烯烃 - 命名法、双键(乙烯)结构、几何异构现象、物理性质、制备方法、化学反应:氢、卤素、水、氢卤化物(马尔可夫尼科夫加成和过氧化物效应)的加成、臭氧分解、氧化、亲电加成机理。炔烃 - 命名法、三键(乙炔)结构、物理性质、制备方法、化学反应:炔烃的酸性、氢、卤素、氢卤化物和水的加成反应。芳香烃:简介、IUPAC 命名法、苯:共振、芳香性、化学性质:亲电取代机理。硝化、磺化、卤化、Friedel Craft烷基化和酰化、单取代苯中功能团的指导影响。致癌性和毒性。
Barry Sharp Lester发明了“点击化学”。他赢得了2022年诺贝尔。点击化学具有许多优势。点击化学自成立以来已经塑造了当代化学的几个领域。点击化学帮助我们理解并制备复杂的分子。本评论检查了点击响应重要性。HUISGEN 1,3-偶极环加成技术产生1,4-二取代的1,2,3-三唑来自Azode和末端炔烃。该学科在研发方面也正在迅速扩大。本文对CC及其许多用途进行了快速审查。cui经常使用叠氮化物碱基环加成,因为它是强大的变更代理。根据研究和综述研究,通过CU(I)催化剂的生成点击化学有助于耦合过程。单击反应类型和组可以由炔烃,环棒和叠氮化物形成。这项研究涵盖了点击化学及其在药物发现中的应用,点击化学辅助类固醇取代,无金属点击反应,药物产生和三维生物印刷。我们还检查了点击化学的利弊和优势。
正在进行的研究探索了新的腈基官能化分子,例如疏螺旋体素 5 和具有腈基的二氢喹海松酸衍生物。6 氘在延长药物在体内的半衰期方面起着至关重要的作用,从而改善了暴露情况并减少了有毒代谢物,从而提高了疗效和安全性。7,8 例如 FDA 批准的第一个氘代药物,2017 年的氘代丁苯那嗪,9 和 2022 年的德克拉伐替尼。10 炔烃通常存在于药物分子中,可促进良好的相容性,11 例如依法韦仑、炔诺孕酮、炔雌醇等。随着这些药物的蓬勃发展,全面了解它们的生物和生理机制对于制定个性化的治疗方法至关重要。药代动力学研究旨在监测体内的药物浓度,反映药物在整个暴露过程中身体与药物的相互作用,包括药物的吸附、分布、代谢和消除/
摘要 技术的快速进步和紧迫的全球挑战要求不断开发新的高效材料。全球研究人员正在探索超越当前使用技术和材料的创新技术和材料。在当代材料中,碳基石墨炔 (GDY) 因其在能源相关应用中的出色性能而脱颖而出,这要归功于其卓越的潜力和可调节的光电特性。GDY 是一种新型二维碳同素异形体,在碳家族中引起了广泛关注。GDY 与其他碳同素异形体的区别在于其独特的结构构型,具有 sp 2 和 sp 杂化碳原子。平面内杂化碳的这种拓扑排列具有高度共轭的特性,以及增强的电荷迁移和电子迁移率。本综述深入探讨了 GDY 的最新进展、特性和结构修改,重点是改进其在能源转换中的应用。具体来说,它为使用基于 GDY 的纳米催化剂进行光催化和电催化析氢和二氧化碳还原提供了宝贵的见解。