教职人员 AC Mandal,博士(印度理工学院班加罗尔分校):实验空气动力学、流动不稳定性和过渡、湍流剪切流。 AK Ghosh,博士(印度理工学院):飞行力学、神经网络、飞行测试。 A. Tewari,博士(密苏里罗拉大学):飞行力学、气动伺服弹性、空间动力学和控制。 A. Kushari,博士(佐治亚理工学院):推进、燃烧、液体雾化、流动控制。 Abhishek,博士(马里兰大学帕克分校):旋翼机气动力学、未来垂直起降/短距起降系统、飞行器设计、无人机系统、逆飞行动力学和风力涡轮机。 Ajay Vikram Singh 博士(马里兰大学帕克分校):燃烧和反应流、燃烧产生的功能性纳米颗粒、烟灰形成和氧化、火灾动力学、爆轰和爆炸。Arun Kumar P. 博士(印度理工学院坎普尔分校):亚音速和超音速喷气机、流动控制、喷气声学。Ashoke De 博士(路易斯安那州立大学):计算流体力学、湍流燃烧、燃气轮机推进。CS Upadhyay 博士(德克萨斯 A&M 大学):计算力学、损伤力学。Debopam Das 博士(印度理工学院班加罗尔分校):理论和实验流体动力学、气动声学、不稳定性与过渡、涡旋动力学。非定常空气动力学、鸟类和昆虫的飞行。
摘要:电气化运输具有多种好处,但也引发了一些担忧,例如锂离子电池中使用的易燃配方。牵引电池中的火灾可能难以扑灭,因为电池单元受到良好保护且难以接触。为了控制火势,消防员必须延长灭火剂的使用时间。在这项工作中,对三辆车和一个电池组火灾测试中的灭火水进行了分析,以确定其中的无机和有机污染物,包括颗粒结合多环芳烃和烟灰含量。此外,还确定了收集的灭火水对三种水生物种的急性毒性。火灾测试中使用的车辆既有传统的汽油燃料车,也有电池电动车。在所有测试中,对灭火水的分析表明,它们对测试的水生物种具有高毒性。发现几种金属和离子的浓度高于相应的地表水指导值。检测到的全氟和多氟烷基物质的浓度在 200 至 1400 ng L − 1 之间。冲洗电池使全氟和多氟烷基物质的浓度增加到 4700 ng L − 1 。与从传统车辆分析的水样相比,来自电池电动汽车和电池组的灭火水中含有更高浓度的镍、钴、锂、锰和氟化物。关键词:电池电动汽车、锂离子电池、火灾测试、灭火水、生态毒性■ 介绍
已经开发了一种可靠而紧凑的甲烷热解的化学机制,导致形成大型多环芳烃(PAH)分子。该模型设计用于研究碳纳米结构合成的研究,例如碳黑色和石墨烯片,包括烟灰生长动力学。用碳纳米结构合成的甲烷热解是一个两阶段的过程,其中CH 4转换为C 2 H 2的转化是乙炔PAH分子的生长。我们预先发送了一种准确描述两个阶段的化学机制。我们已经建立了一种紧凑而准确的化学机制,能够基于ABF1机制对甲烷热解的两个阶段进行建模,该机制通过Tao 2的机制扩展了最突出的反应途径,用于小型PAH分子和HACA途径,用于较大的PAH分子,用于较大的PAH分子,高达37个芳香环。通过比较多组可用的实验数据来验证所得机制。获得了两个过程的实验数据的良好一致性。在长时间的长期时间内,测试了该机理的性能,用于富含甲烷的混合物的热解,导致PAH分子的大量形成。表明,在化学机制中包含较大的PAH物种(最多A37)对于准确预测转化为PAH分子的碳的比例很重要,并且相应地,混合物中的乙烯烯烃的残留分数很重要。可应要求提供的机制文件。
pyrotinib(Pyr)是一种泛鼠激酶抑制剂,可通过RAS/RAF/MEK/MAPK和PI3K/AKT途径抑制信号传导。在这项研究中,我们旨在研究烟灰替尼与阿霉素(ADM)结合的抗肿瘤效率,并探索其在HER2 +乳腺癌上的机制。我们研究了PYR和ADM对体外和体内乳腺癌的影响。MTT测定,伤口愈合和Transwell侵袭测定法用于确定PYR,ADM或PYR与ADM相结合对细胞增殖,迁移以及SK-BR-3和AU565细胞在体外的影响。细胞凋亡和循环。在体内,异种移植模型被建立,以测试PYR,ADM或联合治疗对裸鼠的影响。蛋白质印迹以评估Akt,p-Akt,p-65,p-p65和Foxc1的表达。结果表明,PYR和ADM显着抑制了SK-BR-3和AU565细胞的增殖,迁移和侵袭,组合组的抑制率高于每个单一疗法组。pyr诱导了G1相细胞周期停滞,而ADM诱导G2相阻滞,而联合组诱导G2期停滞。联合治疗显示了协同的抗癌活性。此外,皮尔显着下调了p-akt,p-p65和foxc1的表达。在临床环境中,PYR还对乳腺癌发挥了令人满意的效率。这些发现表明PYR和ADM的组合在体外和体内都表现出协同作用。pyr通过下调AKT/p65/FOXC1途径来抑制乳腺癌的增殖,迁移和侵袭。
摘要:我们报告了原始[5,5] C 130 -D 5H(1)富勒伯液的开创性实验分离和DFT表征。此成就代表了以原始形式获得的最大的可溶性碳分子。[5,5] C 130物种是迄今为止纯化的最高纵横比的富列型,现在超过了最近的巨型[5,5] C 120 -D 5D(1)。与C 90,C 100和C 120富默物相比,C 130 -D 5H的纳米管碳(70)比末端cap富烯基原子(60)多。从39,393个可能的C 130孤立的五角大楼规则(IPR)结构开始,在分析了极化性,保留时间和紫外线光谱后,这三层数据层明显预测了单个候选异构体和富富集管,[5,5] C 130 -D 5H(1)。通过原子分辨率的茎数据增强了这种结构分配,显示了与[5,5] C 130 -D 5H(1)富勒伯一致的独特和管状“类似药丸”结构。与球体富勒烯反应的高选择性允许从烟灰提取物中轻松分离并去除富富集。实验分析(HPLC保留时间,UV-VIS和STEM)协同使用(具有极化性和DFT属性计算)来降低选择并确认C 130 FullerTube结构。实现了新的[5,5] C 130 -D 5H富勒特管的隔离,为富勒特管系列的电子限制,荧光和金属特征的应用开发和基本研究打开了富勒彭的一系列具有系统的管子伸长的分子。这个[5,5]富勒伯家族还邀请了单壁碳纳米管(SWCNT),纳米角(SWCNHS)和Fullerenes进行比较研究。
空气污染对人类健康,经济和生态系统造成重大伤害。美国每年花费数十亿美元来减少空气污染,以保护公共卫生和环境。超过50年,工业国家已减少了主要由发电厂,运输,工业和农业产生的有害空气污染物。在过去的几十年中,美国空气质量发生了很大的改进。但是,全国心血管和呼吸系统疾病每年仍然有差的空气质量导致大约100,000例过早死亡。NOAA提供了空气质量预测和批判性研究和观察,这些预测支持警报,并制定有效的空气质量管理政策和策略。什么是空气质量?空气质量取决于我们呼吸空气中气体和颗粒物污染物的数量和类型。污染物都是由化学反应在大气中直接发射和形成的。影响美国空气质量的关键污染物是:地面臭氧:一种由前体排放产生的气体,包括氮氧化物,一氧化碳,甲烷和挥发性有机化合物,在阳光下有反应。地面臭氧是烟雾的主要组成部分,对人类健康和生态系统具有有害影响。由于健康效应主要与小颗粒有关,因此PM 2.5是NOAA的研究和操作预测焦点。其他含氮污染物的其他来源可能源自农业活动,例如施肥和动物废物。细颗粒物质(PM 2.5):小颗粒(有效直径为2.5微米或更少)发射到空气中(例如,燃烧源的烟灰)或其他气体污染物的化学反应形成,例如硫,氮气,氮气和有机化合物(例如,从燃料燃料的燃料燃料,燃料燃料,燃料燃料),含有硫,氮气和有机化合物。其他空气污染物:主要由化石燃料燃烧发射的含有汞,硫或氮的化合物也可能是影响人类和环境健康的污染物。
对以超音速速度飞行的商用和民用飞机的潜在发展产生了新的兴趣。噪声和排放影响首先在1970年代进行了广泛的研究,然后在1990年代和2000年代初期再次进行了研究。因此,有必要详细介绍我们对噪声的潜在影响以及与排放有关的环境问题的理解,尤其是对臭氧和气候的影响。正在考虑使用常规燃料的不同尺寸飞机的超音速运输(SST)机队,从业务飞机延伸到可以运输数百名乘客的较大飞机。科学家现在正在使用全球大气化学和物理学的最先进模型进行新的研究,以了解对平流层臭氧的潜在影响以及与SST机队相关的气候的辐射强迫。这些研究为超音速飞机潜在环境影响的下一代分析奠定了基础,这些分析获得了开发的考虑。以及长寿命二氧化碳(CO 2)的排放,气候的辐射强迫又取决于水蒸气浓度(H 2 O),臭氧(O 3),甲烷(CH 4)的空间变化气溶胶)。飞机舰队的排放尤其取决于车队的尺寸,飞行特性,马赫速度,巡航高度,巡航时的舰队燃料使用,无X排放指数以及有关燃料和烟灰排放中硫的假设。f或目前正在评估SST车队的飞机数量和类型的投影,在未来2 - 3年中,全球平均总臭氧的变化可能会少于1%,而根据特定的车队参数,这种变化是正面还是负数。气候效应也可能很小,导致全球平均表面温度的变化通常要小得多(总效应也取决于是否使用了可持续航空燃料)。已经取得了重大进展,以建模并减轻超音速飞行中声音繁荣的影响。正在进行的研究以评估对公众的影响的研究表明,未来的低吊杆超音速飞机设计将创造出比传统的声音繁荣不那么烦人的更安静的声音“重击”。尽管如此,对于完全评估特定飞机的噪声效应是必要的进一步研究。
摘要:我们报告了异构性纯和原始C 120耗油管的第一个实验表征,[5,5] C 120 -D 5D(1)和[10,0] C 120 -D 5H(10766)。这些新分子代表迄今为止分离的最高纵横比所有分子,例如,先前最大的空笼子富勒特管为[5,5] C 100 -D 5D(1)。与C 60 -C 90富勒烯研究的三十年相比,20个碳原子的增加代表了巨大的飞跃。此外,[10,0] C 120 -D 5H(10766)FullerTube具有源自C 80 -D 5H的端盖,是一种新的FullerTube,其C 40端率尚未通过实验隔离。对各向异性极化性和UV -VIS的理论和实验分析将C 120异构体I分配为[5,5] C 120 -D 5D(1)富勒图管。C 120异构体II匹配A [10,0] C 120 -D 5H(10766)FullerTube。这些结构分配得到了拉曼数据的进一步支持,显示了[5,5] C 120 -D 5D(1)的金属特征和C 120 -D 5H(10766)的非金属特征。STM成像揭示了一个管状结构,其纵横比与[5,5] C 120 -D 5D(1)富集管一致。具有不适合晶体学的微克量,我们证明了DFT各向异性极化性,可通过长期接受的实验分析(HPLC保留时间,UV-VIS,Raman和STM)增强,可以协同使用(带有DFT)(带有DFT)来降低选择,预测,预测,预测,分配C 120 FullerTube cantube untertube cantube untertube结构。从数学上可能的IPR C 120结构中,这种各向异性极化范式非常有利地将管状结构与碳烟灰区分开。识别异构体I和II是令人惊讶的,即,2个纯化的异构体,用于两个广泛区分特征的可能结构。这些金属和非金属C 120富勒伯异构体为基础研究和应用开发打开了大门。