我们报道了一种简便的顶平方形纳秒 (ns) 激光直写 (LDW) 烧蚀技术,在薄银膜基底上制备柔性透明电极的方形银蜂窝结构。方形银蜂窝结构具有表面光滑、边缘清晰、机械稳定性、与基底的强附着力以及良好的电阻和透明度。由于通过一步顶平方形纳秒 LDW 烧蚀银膜进行简便的冷加工,可以制备不同厚度的银网电极 (20 nm、50 nm、160 nm),这些电极具有光滑的金属蜂窝表面和优异的边缘清晰度。特别是,该策略能够制备高方形蜂窝面密度(烧蚀方形蜂窝占总面积的比例)的银网,从而显着提高透明度 (>85%),而不会显著牺牲电导率(<23.2 Ω sq−1 电阻单位)。因此,所提出的金属蜂窝结构显示出与聚萘二甲酸乙二酯(PEN)柔性基板的兼容性,适用于银基可穿戴电子设备,且电极上没有任何保护层。
第 1 节 - 技术描述、分阶段许可方法 第 2 节 - 授权用户:RSO、ARSO、RST、AU 第 3 节 - 放射性物质 - 许可内容 第 4 节 - 许可活动 第 5 节 - 辐射防护计划 第 6 节 - 剂量评估 第 7 节 - 财务保障 第 8 节 - 拟议许可条件
有机蛋白质因其独特的光学性质、卓越的机械特性和生物相容性而备受青睐。在有机蛋白质薄膜上制造多功能结构对于实际应用至关重要;然而,特定结构的可控制造仍然具有挑战性。在此,我们提出了一种通过调节有机材料的凸起和烧蚀在丝膜表面创建特定结构的策略。基于受控的超快激光诱导晶体形态转变和丝蛋白的等离子体烧蚀,产生了直径连续变化的独特表面形貌,如凸起和凹坑。由于不同周期的凸起/凹坑结构具有各向异性的光学特性,所制造的有机薄膜可用于大规模无墨彩色打印。通过同时设计凸起/凹坑结构,我们设计并展示了基于有机薄膜的光学功能装置,该装置可实现全息成像和光学聚焦。这项研究为多功能微/纳米结构的制造提供了一种有前途的策略,可以拓宽有机材料的潜在应用。
使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。应自行审查每个覆盖范围请求。提交的索赔医疗主管应在适当的情况下行使临床判断,并在做出个人覆盖范围确定方面酌情决定。如果保险或服务的保险不取决于特定情况,则仅在根据适用的覆盖范围政策中概述的相关标准(包括涵盖的诊断和/或程序代码)中概述的相关标准提交请求的服务。在此保险策略未涵盖的条件或诊断费用时,不允许报销服务(请参见下面的“编码信息”)。在计费时,提供者必须在提交生效日期起使用最适当的代码。
当样品返回舱进入地球大气层时,舱前会产生强烈的冲击波,舱体会受到严重的气动加热。烧蚀方法是保护舱体免受加热的有效热保护方法。未来,舱体预计会更大,再入速度也会更快。因此,舱体将受到更严重的气动加热。在本实验中,使用孔径不同的多孔碳(5 μm、10 μm 和 25 μm)和浸渍氰基丙烯酸酯的多孔碳作为试件。结果发现,不同试件的磨损时间和磨损行为存在差异。此外,通过使用自动位置控制系统进行实验,计算出有效烧蚀热,该系统可以检测试件的尖端并将其控制到目标位置。浸渍氰基丙烯酸酯(5 μm)的多孔碳的有效烧蚀热约为 2.8 MJ/kg。
您可以在手术后24小时开车。但是,您可能会酸痛,并且想等待更长的时间开车,尤其是长距离。消融后,活动限制旨在防止腹股沟切口出血。任何涉及腹股沟区域中大量运动或增加腹部压力的活动的活动也会对切开切口的血管施加压力。因此,在消融后的最初4-7天内,避免繁重(超过10磅),在排便过程中紧张,过度弯曲,弯腰,长距离行走,跑步或爬上许多楼梯。您可以在消融后1周恢复正常活动。
激光直接驱动 (LDD) 是惯性聚变能 (IFE) 设计最合适的方案之一,因为它可以比间接驱动 [1] 至少多两倍的激光能量耦合到内爆壳层。一旦通过宽带激光技术或激光波长失谐缓解横光束能量转移 (CBET),LDD 中激光与目标的耦合可以进一步增强约 2 倍。LDD 依赖于低 Z 烧蚀材料/等离子体(如聚苯乙烯、铍、碳等)对激光能量的吸收。日冕等离子体中吸收的激光能量主要通过电子热传导传输到烧蚀前沿。该过程的效率被称为内爆的“水效率”,即激光吸收和火箭效率的乘积。内爆舱的动能越大,点火裕度越大,IFE 目标的增益越高。三件事对于通过 LDD 方案实现 IFE 的成功至关重要:(1)。使大部分激光能量被日冕中的烧蚀等离子体吸收;(2)获得最佳的水效率,将尽可能多的激光能量与内爆胶囊的动能耦合,从而提供高烧蚀压力以加速壳体;(3)提高烧蚀速度以稳定瑞利-泰勒不稳定性增长,从而提高胶囊的完整性。有几种研究方向可以实现上述目标。宽带激光等先进激光技术可以解决吸收增加和印记减少等问题 [2]。一种补充途径是目标解决方案,即通过设计和制造先进的烧蚀材料来提供上述成功实现高增益 IFE 目标设计的关键因素。目标解决方案可以解决印记减少和 RT 等问题
摘要 共烧结低温陶瓷的增材制造 (AM) 为制造新型 3D 射频 (RF) 和微波通信组件、嵌入式电子设备和传感器提供了独特的途径。本文介绍了有史以来首次直接 3D 打印低温共烧结陶瓷/浮动电极 3D 结构。基于浆料的 AM 和选择性激光烧蚀 (SLB) 用于制造带有银 (Ag) 内部浮动电极的块状电介质 Bi 2 Mo 2 O 9 (BMO,烧结温度 = 620 – 650°C,ε r = 38)。开发了一种可打印的 BMO 浆料,并优化了 SLB,以改善边缘定义并烧掉粘合剂而不会损坏陶瓷。SLB 增加了保持形状所需的生坯强度,生产出无裂纹的零件,并防止共烧结过程中银渗入陶瓷。烧结后,将生坯部件放入传统炉中烧结,温度为 645°C,烧结时间为 4 小时,密度达到 94.5%,抗压强度达到 4097 MPa,相对介电常数 (εr) 为 33.8,损耗角正切 (tanδ) 为 0.0004 (8 GHz)(BMO)。由此证明了使用 SLB 后进行打印后烧结步骤来创建 BMO/Ag 3D 结构的可行性。
通过地面激光器发出的单个多 kJ 脉冲避免低地球轨道上的空间碎片发生烧蚀碰撞 Stefan Scharring、Gerd Wagner、Jürgen Kästel、Wolfgang Riede、Jochen Speiser 德国航空航天中心 (DLR),技术物理研究所,Pfaffenwaldring 38-40,70569 斯图加特,德国 摘要 我们对一个概念性想法进行了分析,即从地面激光站发射的单个高能激光脉冲是否可能导致碎片物体表面的物质烧蚀,从而产生后坐力,从而产生足够高的速度变化,以避免空间碎片碰撞。在我们的模拟中,我们评估了大气限制的影响,例如由于气溶胶消光导致的激光功率损失以及由于大气湍流导致的激光束增宽和指向抖动。为了补偿湍流,探索了自适应光学系统在合适发射器配置和激光导星组合方面的使用。根据 ESA DISCOS 目录,使用具有简化几何形状的虚拟目标来研究激光与火箭体、任务相关物体和非活动有效载荷之间的相互作用。此外,NASA 标准破碎模型可作为碰撞和爆炸碎片的参考,这些碎片在低地球轨道上产生了 9101 个碎片目标。对于这些物体,使用基于光线追踪的代码对激光烧蚀后坐力进行了研究,同时考虑了未知的目标方向以及残余激光指向误差,这些误差构成了整个 5 个维度(3 个旋转,2 个平移)的随机性来源,这些随机性来源采用蒙特卡罗方法解决。根据特定碎片物体平均高度的计算激光通量分布计算激光动量耦合。作为计算激光与物质相互作用的输入,使用了铝、铜和钢作为代表性空间碎片材料的辐照实验数据。从照射仰角、轨道位移、动量转移不确定性、成功概率、碎片材料以及碎片尺寸、质量和启动激光烧蚀过程所需的最小能量密度等方面讨论了激光赋予动量的模拟结果。1.引言由于空间碎片的数量不断增加,且难以进行轨道改造,近年来提出了几种基于激光的空间碎片远程动量转移 (MT) 概念[1][2]。特别是,由于连续发射 (CW) 激光器的商业化应用,其平均输出功率超过 10 kW 级,通过光子压力进行 MT 似乎变得可行。为了避免空间碎片碰撞,模拟已经表明,在多次激光站过境期间,通过目标照射可以实现几毫米/秒的足够高的速度增量 [1]。最近,在 LARAMOTIONS(激光测距和动量传递系统演化研究)研究中,研究了用于碎片跟踪和避免碰撞的相应激光站网络的可行性和估计性能。这项研究是由我们研究所领导的一个财团为欧洲航天局 (ESA) 开展的概念分析。[3] 概述了研究结果,[4] 列出了使用光子压力进行轨道碰撞避免的详细天体动力学可行性研究,而 [5] 显示了所采用的激光站网络的详细结果。激光烧蚀的动量耦合比光子压力的耦合高出 3 到 5 个数量级 [6]。因此,烧蚀通常被认为是在多次高能激光站过境期间通过降低近地点清除激光碎片的合适机制。然而,最近在真空中对几厘米大小的物体进行的跌落实验表明,激光烧蚀动量转移在避免空间碎片碰撞方面具有巨大的潜力,证明单个激光脉冲就可能使小的空间碎片状物体产生几十 ⁄ 的速度变化∆ [7]。
老材料在微电子领域的重要性日益凸显,不仅体现在二级封装(即印刷电路板组装层面),也体现在一级封装(例如,图 1 a 所示的倒装芯片组装)中。1 在这些应用中,各种类型、不同尺寸的焊料凸块用于三维集成电路 (3D-IC) 的复杂互连。1a 典型焊料凸块的构建示意图如图 1 b 所示。当今 300 毫米晶圆级焊料凸块应用技术上最相关的合金材料是电沉积共晶 SnAg。1b 然而,由于 Sn 2+ 和 Ag + 离子的标准还原电位差异很大(ΔE0≈0.94V),通过电化学沉积制造 SnAg 合金是一项艰巨的任务。为了解决这个问题,通常会在 SnAg 电镀液中添加络合剂和螯合剂,这些络合剂和螯合剂选择性地作用于较惰性的 Ag + 离子,从而减慢其沉积速度以与 Sn 2+ 相兼容,并促进两种金属的共沉积。2 这是实现所需合金成分的关键先决条件。3 此类络合剂和螯合剂的另一个补充功能是稳定含 Sn 电解质中的 Ag + 离子,防止其还原为金属 Ag 以及随之而来的 Sn 2+ 氧化