挥发性腐蚀抑制剂 (VCI) 是为抑制湿气管道顶部腐蚀 (TLC) 而开发的,其注入方法可显著影响所需剂量,从而影响其效率。在本研究中,使用批量和连续注入方法比较了 VCI 的效率。使用 API 5l X65 碳钢级样品进行了一系列 TLC 测试,包括 5 天控制测试、7 天连续注入测试(每 3 天 200 ppm VCI)和 5 天批量注入测试(1000 ppm VCI)。使用重量损失法 (ASTM G1-03) 确定均匀腐蚀速率 (UCR)。使用无限聚焦显微镜 (IFM) 评估点蚀速率 (ASTM G1 46- 21),并使用扫描电子显微镜 (SEM) 分析表面形态特征。总体而言,由于 VCI 浓度剂量不足,两项测试都无法有效抑制腐蚀。然而,批量注入测试的效果优于连续注入测试(UCR:0.40 毫米/年 vs. 0.69 毫米/年;点蚀率:0.70 毫米/年 vs. 3.28 毫米/年),因为它只造成均匀腐蚀。连续注入测试中腐蚀样品的严重程度是由于 VCI 膜部分覆盖顶部试样表面,导致 VCI 局部破裂,从而导致高点蚀率。总之,在这种测试环境中,两种方法都需要更高浓度的 VCI 才能有效降低腐蚀率。
自 2011 年首次合成 MXene 以来,MXene 的安全且可扩展的生产一直是一个重要但难以实现的目标 1 。MXene 是二维纳米材料,通式为 M n+1 X n T z ,其中 M 是早期过渡金属(通常是 Ti、Nb 或 V),X 是碳和/或氮,T z 代表表面终止(例如 -F、-Cl、-OH、-O)。MXene 源自一种称为 MAX 相的母材料,该母材料将 M-X 与来自周期表 13-16 2,3 族的层间 (A) 元素结合在一起。已经合成了 50 多个 MAX 相;但是,只有一些 MAX 相可以通过传统的酸蚀技术剥离成感兴趣的二维 MXene 纳米片。之前的研究大多集中在 Ti 基 MXenes 上。MXene 纳米片可用于储能、催化、EMI 屏蔽、传感器和复合材料 4-10 等一系列应用。高浓度氢氟酸 (HF) 通常用于从 MAX 相中选择性去除 A 层以生产 MXenes。其他方法通常使用盐形成原位 HF 溶液,例如将氟化锂 (LiF) 和盐酸 (HCl) 结合或使用氟化氢铵 (NH 4 )HF 2 1,11 。然而,使用水性氟化物蚀刻剂具有许多固有的风险和挑战。与处理 HF 相关的危害使得 MXene 合成工艺难以扩大到商业水平。酸蚀 MXene 合成路线的另一个缺点是废物管理 12 。此外,传统的 HF 酸蚀技术仅限于少数 MAX 相,因此需要
面等离子体共振,促进了先进传感器的发展。[2,3] 在介电材料上制造的纳米孔阵列——更普遍地说是由亚波长直径的孔组成的规则有序结构——构成了集成二维光子晶体和全介电超表面架构的基础,能够以前所未有的水平限制和操纵光(包括幅度、光谱和空间管理)。[4] 这种等离子体和全介电纳米结构的纳米制造的通常技术方法依赖于各种工具和方法,其中包括聚焦离子束、电子束、光刻、反应离子蚀刻等。[5,6] 这些制造方法成熟且性能高,然而它们速度慢,需要针对所用每种材料进行优化的几个步骤和技术,从而不可避免地增加了整个过程的总成本和复杂性。未来的先进设备现在要求除了利用完美控制的平面纳米图案(在 X 和 Y 维度)之外,还需要利用第三维度(Z)。[7] 特别是,深度至少达到几微米的纳米孔阵列排列可以大大拓宽纳米光子结构的可能设计和功能范围。[7,8] 然而,在材料表面制造具有圆柱形轮廓的如此深的孔的技术具有挑战性。[9–12] 因此,引入一种多功能的制造方法,将孔深度添加为一个直接且独立的自由度,有望形成先进的架构。在此背景下,我们探索超快激光加工作为在参考介电材料熔融石英表面创建深气孔的直接方法。所谓“直接”,是指通过一步工艺制造一个孔,只用一次激光照射即可烧蚀物质,无需任何额外处理(例如化学蚀刻[13]),也无需平移目标材料。[14] 尽管超短脉冲直接激光烧蚀的最终空间分辨率尚未达到足够的性能标准,无法与传统纳米制造工艺相媲美,无法制造功能性纳米光子元件,但我们的目标是表明它代表了一种替代和互补的解决方案,在速度、无掩模和一步工艺、不需要真空环境或化学品方面具有吸引人的优势。此外,纳米结构可以在单个
摘要 增材制造电子产品 (AME),也称为印刷电子产品,对于预期的物联网 (IoT) 越来越重要。这需要制造技术,允许将各种纯功能材料和设备集成到不同的柔性和刚性表面上。然而,目前的基于墨水的技术存在复杂且昂贵的墨水配方、与墨水相关的污染(添加剂/溶剂)以及有限的印刷材料来源等问题。因此,打印无污染和多材料结构和设备具有挑战性。这里展示了一种利用纳米和微米级定向激光沉积的多材料增材纳米制造 (M-ANM) 技术,允许打印横向和垂直混合结构和设备。这种 M-ANM 技术涉及对放置在打印机头内的目标转盘上的固体目标进行脉冲激光烧蚀,以原位生成无污染的纳米颗粒,然后通过载气将其引导至喷嘴并到达基板表面,在那里它们被第二束激光实时烧结和打印。目标转盘按照预定的顺序将特定目标与烧蚀激光束接触,从而在单个过程中打印多种材料,包括金属、半导体和绝缘体。利用这种 M-ANM 技术,可以打印和表征各种多材料设备,例如银/氧化锌 (Ag/ZnO) 光电探测器和混合银/氧化铝 (Ag/Al 2 O 3 ) 电路。我们的 M-ANM 技术的质量和多功能性为新兴物联网提供了潜在的制造选择。关键词:印刷电子、多材料打印、增材纳米制造、干打印、柔性混合电子。介绍随着物联网 (IoT) 的出现,大多数物体和系统都有望变得智能,人们对开发新材料和先进制造技术产生了浓厚的兴趣,以便将各种功能(包括传感器、电池、显示器和电子设备)直接集成到不同的表面上 [1-6]。传统的电子制造方法,如光刻、聚焦离子束 (FIB) 和电子束光刻 (EBL),需要复杂且昂贵的洁净室设施或高真空设备,并且还涉及多个减材步骤。因此,人们对可以在大气条件下工作并在各种表面上打印的经济高效的增材制造/打印技术产生了广泛的兴趣。
在过去的十年中,单晶钻石(SCD)生长的显着技术进步导致了高质量SCD底物的商业产品,通常以尺寸的几个平方毫米的良好特定板的形式获得[1]。同时,此类板的成本已大大降低[2],这引发了重要的研发工作,旨在利用SCD的特性[3],热[4]和机械性能[5] [5]用于电子学中的各种应用[6],光(光(光环)[7-10],光学和光学技术[11] [11] [11] [11] [11] [11] [11] [11])[11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11]。高质量的SCD板是通过化学蒸气沉积(CVD)[13,14]或高压高温(HPHT)[15]技术生长的。记录示范最近产生的SCD底物直径为10 cm [16],但如今更典型的尺寸为1 mm – 10 mm,厚度为50μm -1 mm。基板以不同的“等级”类别提供(例如电子[6,17],光学[18]或机械[19])根据其杂质的程度,这表明底物性质已被遗忘,特别适合特定的应用区域。SCD的精确成型主要是使用激光切割和烧蚀技术以毫米尺度的目标维度进行的,具有几微米的精确性要求,例如切片钻石板或制造切割工具,用于转弯,敷料或铣削。微丝[41-47]和光栅[48,49])和光子学(例如用于耦合器[50-54]和谐振器[52,55-59])。激光处理也用于千分尺尺度的结构,例如复合折射率[20-23],埋入的波导[24-26]和微通道[27,28]。离子束蚀刻(IBE)可以有效地平滑并抛光SCD板[29,30],而聚焦的离子束(FIB)铣削已用于制造悬浮的结构[31-33],砧[34,35]和固体膜片[36-38]。尽管这些图案技术对于一组特定形状和设备最有效,但基于反应性离子蚀刻(RIE)制造方法是最常用的方法,用于广泛的应用,需要亚微米精度[39,40],例如微观典型(例如,与Rie相比
阿根廷 TMT 项目的 Tambo South 和 Malambo 目标计划。 • 2024 年 11 月,使用 ASTER-Sentinel-2 图像对 Garwin 研究(2023 年 5 月)中的其他勘探目标进行了细化,确定了 Tambo South VI-2 (B1) 和 Lola-2 (B2) 以供进一步研究。Malambo 3 显示英安岩侵入和角砾岩堤坝,而 Lola-2 则显示蚀变闪长岩和铜矿物。西部 TMT 地区的光谱区显示出潜力。 • Lola-2 的现场观测发现了细粒闪长岩,具有叶状蚀变和裂缝,具有含蓝铜矿(~1%)和孔雀石(~0.3%)的石英碳酸盐脉和含黄铁矿(~1%)的块状石英脉。地球化学采样和测绘将很快开始。 • 本季度继续修建通往 Tambo South 和 Malambo 的通道,Tambo South 钻探于 1 月 18 日开始。 • 本季度营地扩建和物流基础设施已完工。卡拉哈里铜矿带项目 (KCB) - (博茨瓦纳)
低温共烧陶瓷技术是生产先进集成压电器件的先决条件,这种器件具有高度紧凑性和超低驱动电压等优点,可用于现代微机电系统。然而,作为最基本的功能电子元件,具有剪切型输出的压电陶瓷结构几十年来从未通过共烧法成功制备成多层形式。平行施加电场和极化技术制造要求在理论上与自然发生的剪切模式中固有的正交取向不相容。在此,受到从相同晶胞构建超材料的理念的启发,设计并制备了一种具有独特图案化电极和阵列式压电陶瓷子单元的人工原型装置,事实证明它可以完美地产生合成面剪切变形。在相同驱动电压下,与之前的 d 15 模式块体元件相比,剪切型位移输出增强了一个数量级以上。基于导波的结构健康监测和力传感的进一步结果证实,该方法消除了艰难的压电技术障碍,并有望从根本上启发集成剪切模式压电装置在增强驱动、传感和传感应用方面的进步。
airpot酿酒师74,78贝恩 - 摩尔人63烘焙托架43,54浴室和循环器 - 完整的单元65 Biltong橱柜67沸腾表28,29批量酿造啤酒店Bravilor 75鸡肉烤架38鸡肉烤38鸡肉烤38芯片垃圾箱15咖啡套装设备70-78咖啡76咖啡76咖啡76咖啡机76 Oven - Accessories 54 Combi Steam Ovens 41 - 42, 50 - 53 Convection Oven - Gas 42 Convection Ovens - Electric 39, 49 Cooker Cabinets 69 Deck Ovens 45 - 47 Decorative Food Display Lamps 60 Espresso Machine - Accessories 76 Espresso Machines 70 - 72, 76 Extraction Hood 54 Flasks 79 Food Dehydrator 66 Food Display Station - Heated 80 Food Warming Cabinet 62油炸锅 - 电动7-9,12-14油炸锅 - 燃气10-11烧烤架 - 电动18,23烧烤架 - 燃气19-22,24-24-24-25 Hot Tray 59 Hotdog Roller 16浸入式循环器-Sous Vide Cookers 65感应炊具58-59-59
选择有潜力应用于未来装甲的材料作为先进材料 ・陶瓷材料 与传统的无压烧结和热压方法相比,静态材料特性如弯曲强度、硬度等。关注脉冲电流压力(放电等离子体)烧结法,提高了静电性能! ・有色金属材料 密度约为黑色金属材料的1/5,比传统材料强度更高 高强度镁合金 低杨氏模量和高强度钛合金 钛合金