传统上,电离辐射(例如X射线、伽马射线、β粒子以及快中子和热中子)被用于诱发这些作物的突变。然而,电子束、质子束和重离子束等新能源正日益为突变育种增添新的视角。虽然单独诱发突变或与常规育种相结合有可能产生变异,但基因组资源的可用性深刻影响着加速遗传作物改良的步伐。下一代测序 (NGS) 技术的出现导致了广泛分子资源的开发,包括转录组序列数据、遗传和物理图谱以及分子标记,使性状定位和标记辅助育种更快、更可靠。为了快速跟踪豆类作物改良,必须使用辐射来扩大变异并同时开发详尽的基因组资源。
摘要。随着未来几年许多研究反应堆的逐步淘汰,小型和中型中子源的不足是可以预见的。激光驱动的中子源有可能填补这一空白,过去几年激光技术取得了巨大进步。即将推出的具有高达 10 Hz 重复率的拍瓦激光器有望大幅提高中子通量。本文开发并优化了一种装置,用于在激光驱动的中子源上进行中子共振光谱分析。然后在 PHELIX 激光系统的实验活动中对该装置进行了评估。激光强度高达 10 21 W/cm²,ns 预脉冲对比度为 10 -7,用于离子加速,结果为 (1.8±0.7)×10 8 N/sr/脉冲,相当于 4 当量的 (2.3±1.0)×10 9 N。这些脉冲经过调节、准直,并通过飞行时间法进行研究,以表征热中子谱以及信噪比。
洛斯阿拉莫斯中子科学中心测量了 233 U 裂变的特性,入射中子能量从热能到 40 MeV。使用带有弗里希格栅的双电离室同时观察到碎片。使用基于质量和动量守恒的双能量分析法确定了释放的平均总动能和碎片质量产额。使用 232 Th 验证了实验方法,并使用 235 U 的热中子诱导裂变校准了绝对能量。这项工作结合了多机会裂变通道截面和裂变模型的新应用,以解释高能下瞬时中子发射引入的复杂性,并将结果扩展到比以前测量的更高的入射中子能量。必须对这些参数进行准确的实验测量,以更好地了解钍燃料循环中同位素的裂变过程。
反应中,必须在中子失活而无法激活原子核或离开反应堆之前将其用于裂变。能够维持链式反应的反应堆被称为具有临界质量。裂变过程中瞬发中子发射的能量约为 2 MeV。238 U 和 235 U 的裂变对中子能量的依赖性表明,235 U 对热中子(20 meV)的截面比 238 U 在 2 MeV 时的截面大三个数量级(238 U 裂变的阈值中子能量为 1.8 MeV)。因此,显然最好的选择是减慢中子的速度。尽管 235 U 约占总 U 同位素混合物的 5%。为了获得临界质量,有必要尽可能快地将它们减速到热能,此时裂变的截面大得多,而其他材料的活化截面较小。热化是通过与较小且不可活化的原子核(如氢或氘(在水中)或碳(石墨))的弹性碰撞完成的。快中子也可用于链式反应堆,但它们在将轻原子核嬗变为放射性原子核以及从重原子核产生可裂变材料方面更具反应性,例如通过中子俘获和随后的两次β衰变将铀 238 转化为钚 239。而快中子反应堆更为复杂。因此,几乎所有现有的商用核电站都使用热中子运行。在这里,有必要与聚变进行快速比较,在聚变中,氘核和氚核聚变形成氦原子和自由中子。释放的能量为 17.6 MeV,大部分是 14.2 兆瓦的超快中子。每输出 1 千瓦热量,就会产生更多、能量更高的中子,这将导致反应堆结构更大规模的激活。辐射对核电站结构的损害是一些裂变电站的寿命可以延长至一个世纪的原因,同时可以预见到更快的周转速度。然后,需要考虑转换成电能的效率。作为比较,第三代反应堆的转换效率约为 30%,而第四代高温反应堆使用联合循环可以达到 60%。在核聚变中,产生的电能中很大一部分必须用于简单地操作磁铁;即使热量可以以 60% 的效率转化为电能,总效率预计也只有 10-30%。由于这些原因,即使产生的能量超过了维持磁铁运转所需能量,聚变发电厂也需要几十年的时间才能实现经济可行性。
摘要 日本政府已批准硼中子俘获疗法 (BNCT) 用于治疗无法切除的、局部晚期和复发性头颈部癌,自 2020 年 6 月起可在国家健康保险报销。住友重工业株式会社 (Sumitomo) 开发了一种用于临床 BNCT 的新型治疗计划系统 NeuCure® Dose Engine。为了将该系统安全地用于临床,将水模内的模拟中子通量和伽马射线剂量率与实验测量值进行了比较。此外,为了验证和确认新的计划系统,将拟人头部模型内的剂量分布与 BNCT 治疗计划系统 SERA 和内部开发的蒙特卡罗剂量计算程序进行了比较。模拟结果与实验结果非常吻合,热中子通量在 5% 以内,伽马射线剂量率在 10% 以内。头部模型内的剂量分布与 SERA 和内部开发的剂量计算程序非常接近,肿瘤的剂量分布在 3% 以内,脑部的剂量分布在 0.3 Gy w 以内。关键词:硼中子俘获治疗,治疗计划系统,调试,蒙特卡罗模拟
主持人是neuton源的最重要组成部分。它的作用是减慢从目标(基于加速器的中子来源)或反应器中渗出的中子,或对材料研究所需的非常低的能量。从历史上讲,专门用于中子散射实验的第一个新来源使用了热中子。如今,由于其对材料研究的显着优势,因此中子源的冷(和超低)中子的产生越来越多。液体 /固体氘(D 2),液体氢(H 2)和碳氢化合物(例如,液化 /甲烷)是反应堆和基于加速器的冷中子源的主持材料的标准选择。所有这些材料具有非常好的中子变化特性,但也具有严重的缺点:在液态氢或有限使用碳氢化合物材料的情况下,在高功率中子源中使用有限的中子能量范围(质子密度相对较低),因为它们容易受到严重辐射损害。因此,在世界各地正在积极寻找一种新型的调制材料,尤其是低温主持人的材料。在本文中,提出了与寻找新的中子调整材料有关的ISIS中子和MUON来源[1]的持续活动。
反应堆物理学因其多学科性质而令人兴奋且引人入胜。探索原子核释放了原子的潜力和迷人的中性粒子——中子的作用!对原子核内能量转移的复杂现象以及孤立中子的相互作用的理解为能源生产打开了许多机会。裂变链式反应的发现对世界来说是一个伟大的尤里卡时刻,这个想法已经得到成功利用。回顾芝加哥堆的 80 年,我们已经取得了长足的进步,并成功设计和运行了几种类型的核反应堆。在世界上所有的动力反应堆中,超过 90% 是基于热中子能谱的。热反应堆的物理特性由散射介质中复杂的中子传输控制,以实现所需的中子谱。新一代反应堆通常必须满足四个主要方面,即可持续性、更好的燃料利用率、固有安全性和更好的经济性。本文旨在介绍这些新型反应堆设计中的设计挑战,其中使用先进燃料来实现上述目标,并调整中子谱以实现更高的安全性。因此,我们必须使用更新的材料并探索未知领域。本文尽量简洁,以便其他领域的读者也能理解反应堆物理学的这些特点。
基于光学材料的剂量法已广泛使用。从灵敏度的角度来看,使用储存磷剂是有利的。(1)热发光(TL)(2,3)和光刺激的发光(OSL)(4-7)已用于个人剂量计和辐射成像。此外,定义为通过电离辐射产生的辐射中心的光致发光的放射性光致发光(RPL)已用于个人剂量测定和荧光轨道检测。(8,9)以实现进一步的灵敏度(10-16)或将适用性扩展到热中子,(17-24)已经进行了大量研究和发表。通常,可用于剂量测定法的储存磷酸盐由无机晶体或包含相对较高原子数元件的玻璃组成。在医学剂量法中,对于癌症的放射疗法,剂量计需要组织等效性。组织等效性是电离辐射能量与生物组织的吸收特征的等效性。为了达到组织等效性,可以使用有限数量的元素(通常原子数为3-9)。这在基于无机化合物的材料设计中施加了严重的限制。实现组织等效的有效方法是使用有机材料或软物质。到目前为止,已经开发了基于凝胶(25)或聚合物(26-31)的放射性剂量计。另外,有机
本文介绍了合成,晶体生长,检测器制造,辐射硬化研究,MCNP建模以及二依依氏锂或Inse 2的表征。这个新开发的室温热中子检测器具有半导体和闪烁的特性,适用于中子检测应用。liinse 2是从元素li开始合成的,由于Li的高反应性,分为两个步骤。使用垂直Bridgman方法生长了一个含Iinse 2的单晶。使用光吸收测量值发现室温带隙为2.8 eV。散装电阻率。光电导率测量2晶片的光电识别在445 nm左右的光电流中。核辐射探测器是用单晶晶片制成的,并测量了各种偏见的α颗粒的响应。估计了千篇一律的产物。γ辐照研究的吸收剂量范围为0.2126至21,262 Gy。在每次辐照后都进行了两个晶圆的表征。γ辐射产生的光产率降低,这转化为alpha检测光谱质心的较低通道数。它也显示出第一次辐照后的衰减时间大大减少。这些是对这种材料进行伽马辐射硬化的第一批研究。
核电已发展成熟,只要能确保并让人认为可以确保其安全使用,核电有望成为许多国家能源计划中更重要的组成部分。尽管发生过事故,但核电行业总体上保持了良好的安全记录。然而,改进总是可能的,也是必要的。安全不是一个静态的概念。国际原子能机构认识到行业安全的重要性,并希望促进安全记录的改善,于 1974 年制定了一项计划,就核电反应堆安全的诸多方面为其成员国提供指导。根据这项核安全标准 (NUSS) 计划,1978 年至 1986 年间,国际原子能机构安全系列中出版了约 60 份涉及放射安全的规范和安全指南。NUSS 计划迄今为止仅限于设计用于发电的热中子反应堆陆基固定式核电站。为了吸取自 NUSS 计划首次出版以来的经验教训,1986 年决定修订并重新发布《规范和安全指南》。在最初制定这些出版物以及修订过程中,我们注意确保所有成员国,特别是那些拥有活跃核电计划的国家,都能提供意见。进行了几次独立审查,包括核安全标准委员会的最后一次审查
