Zone OVECE餐厅零售购物中心学校仓库大型中小型快速完整Prim。 sec。 1A 0.37 4.42 28.00 5.73 3.01 16.49 11.20 1.58 1.40 12.31 2A 1.19 27.80 354.93 67.24 35.22 163.20 80.79 23.16 13.24 91.33 2B 0.22 9.98 96.47 14.89 8.20 37.23 20.68 4.08 2.00 20.47 3A 1.64 26.19 321.17 74.72 37.12 175.36 83.23 23.44 16.47 104.59 3B 1.05 24.46 158.39 46.36 15.84 91.91 51.02 11.07 7.13 81.03 3C 0.43 4.65 25.93 5.08 1.93 14.05 8.43 1.18 0.96 5.42 4A 4.16 40.70 312.15 65.31 42.42 187.11 82.22 22.20 17.51 86.23 4B < 0.01 1.25 15.79 3.91 1.94 8.75 1.83 0.75 0.55 2.39 4C 0.57 6.70 40.88 10.50 3.41 31.49 8.71 2.33 2.11 15.35 5A 1.62 36.25 306.88 94.31 47.73 252.1 83.41 22.83 19.86 126.20 5B 0.44 11.70 107.34 18.83 10.36 58.24 16.42 5.55 3.81 24.27 6A 0.49 10.21 80.46 18.62 10.34 69.71 12.45 4.17 3.62 16.42 6b <0.01 1.19 10.08 2.27 1.33 6.70 1.30 0.93 0.93 0.75 1.73 7 0.04 1.12 10.79 2.62 1.22 1.22 7.97 0.55 0.55 0.58 0.58 0.65 1.53Zone OVECE餐厅零售购物中心学校仓库大型中小型快速完整Prim。sec。1A 0.37 4.42 28.00 5.73 3.01 16.49 11.20 1.58 1.40 12.31 2A 1.19 27.80 354.93 67.24 35.22 163.20 80.79 23.16 13.24 91.33 2B 0.22 9.98 96.47 14.89 8.20 37.23 20.68 4.08 2.00 20.47 3A 1.64 26.19 321.17 74.72 37.12 175.36 83.23 23.44 16.47 104.59 3B 1.05 24.46 158.39 46.36 15.84 91.91 51.02 11.07 7.13 81.03 3C 0.43 4.65 25.93 5.08 1.93 14.05 8.43 1.18 0.96 5.42 4A 4.16 40.70 312.15 65.31 42.42 187.11 82.22 22.20 17.51 86.23 4B < 0.01 1.25 15.79 3.91 1.94 8.75 1.83 0.75 0.55 2.39 4C 0.57 6.70 40.88 10.50 3.41 31.49 8.71 2.33 2.11 15.35 5A 1.62 36.25 306.88 94.31 47.73 252.1 83.41 22.83 19.86 126.20 5B 0.44 11.70 107.34 18.83 10.36 58.24 16.42 5.55 3.81 24.27 6A 0.49 10.21 80.46 18.62 10.34 69.71 12.45 4.17 3.62 16.42 6b <0.01 1.19 10.08 2.27 1.33 6.70 1.30 0.93 0.93 0.75 1.73 7 0.04 1.12 10.79 2.62 1.22 1.22 7.97 0.55 0.55 0.58 0.58 0.65 1.53
摘要。为了改善高级绝热压缩空气存储(AA-CAES)系统的热量存储和热交换系统,研究了带有再生热交换器(RHES)的AA-CAES系统。RHE用于替换传统的复合单元,包括热交换器,高温罐和低温储罐模式。对于带有Rhes的AA-CAE,简化了能源存储系统以减少热量交换和存储过程中的热量损失,因此,输出工作,储能密度,系统的能量存储效率得到提高。建立了热力学模型,并研究了压缩比分布,扩展比分布和环境温度对系统性能的影响。结果表明,对于具有Rhes的AA-CAE,当压缩比的比率为1.14时,压缩机的输入工作为最小值,储能效率为66.42%,储能密度为3.61 kWh/m 3。当扩展比率为0.82时,储能效率达到67.38%,并且能量存储密度达到3.66 kWh/m 3的最大值。
NETL 资助号 DE-FE002776 开发的技术已用于预测由于在役氧化导致 𝛾′ 结构演变而导致的蠕变。• 目前正在测试 • Haynes 224 的蠕变数据
摘要:热交换器是一种用于在两种或多种不同温度、热接触的流体之间传递热能的装置。热交换器广泛应用于不同类型的工业和家庭应用。两种起始温度不同的流体流过热交换器。一种流体流过管(管侧),另一种流体流过管外但在壳体内(壳侧)。挡板放置在壳侧空间,提供壳侧流体的横向流动方向,因此可以实现流体之间更密集的热交换。此外,管束带有挡板,这有助于减少设备的偏转和振动。在目前的研究中,对包含不同方向的扇形挡板的单程、横向流壳管式热交换器进行了实验,以计算一些参数,例如传热速率和压降。壳管式热交换器的设计包括机械设计和热设计。机械设计包括主壳体在内外压降下的设计、管道设计、挡板设计等。热设计包括评估所需的有效表面积、管道数量以及找出对数平均温差。使用有效性 NTU 方法开发了热模型。关键词:管道设计、挡板、压降、对数平均温差、NTU 方法、改变直径、实验、热效率。
A c 横截面积,[ m 2 ] A s , A h 总传热面积,[ m 2 ] β 表面密度,[ m 2 /m 3 ] 或整体压力梯度,[ Pa/m ] C p 恒压比热,[ J/ ( kgK )] Co 库仑数 d h 水力直径,[ m ] δ 翅片厚度,[ m ] ϵ 热交换器效率或湍流耗散,[ s ] 或翅片间距比 f c 核心摩擦系数 f 扇形 扇形摩擦系数 f 频率,[ Hz ] 或 Forschheimer 摩擦系数 G 质量流速,˙ m/A c , [ kg/ ( m 2 s )] γ 波纹间距比 h 对流膜系数 [ W/ ( m 2 K )] h f 压力损失,[ m ] η 0 , η f二次传热表面的有效性 j 科尔本系数 K c 入口损失系数 K e 出口损失系数 k 湍流动能,[ J/kg ] 或材料的热导率,[ W/ ( mK )] L , l 长度或翅片长度,[ m ] LMTD 对数平均温差,[ K ] M 马赫数 ˙ m 质量流量,[ kg/s ] µ 动态粘度,[ Pa · s ] N st 斯坦顿数 Nu 努塞尔特数 ν 运动粘度,[ m 2 /s ] P 周长,[ m ] 或流体压力,[ Pa ] Pr 普朗特数 Re 雷诺数 ρ 密度,[ kg/m 3 ] Q 或 ˙ Q 传递的热量,[ W ] Q 平衡 热交换器流之间的热平衡 Q 热 热交换器热侧发出的热量,[ W ] Q 冷热交换器的冷侧,[ W ] φ 流动面积与面面积之比或标准偏差 T 温度,[ K ] U 总传热系数 [ W/ ( m 2 K
最大耐腐蚀性。最大热效率。最大热交换器寿命。CG Thermal 的 Umax® 高级陶瓷热交换器是镍合金、活性金属、石墨和石墨热交换器的高价值长寿命替代品,具有无与伦比的耐腐蚀性、热效率、低结垢和可维护性组合。卓越的耐腐蚀性 Umax® 陶瓷热交换器是您最具腐蚀性的传热应用的终极解决方案。它对高达 400 F 的几乎所有化学物质都具有普遍的耐腐蚀性。它们特别适合涉及混合酸、HF、HCL、高浓度 H2SO4、溴、氟或苛性碱的工艺。Umax 陶瓷非常坚硬,不受热冲击影响,具有出色的强度特性、防腐蚀且无污染。耐热冲击和抗机械冲击。Umax® 的抗压强度和抗弯强度分别是石墨的 50 倍和 10 倍。其抗弯强度甚至高于钽。其热性能同样出色,热导率是钽的 2 倍,且热膨胀率较低。