生物质量到电动或通过功率对X化学可以是可变可再生能力较高渗透的未来电网的潜在灵活性。但是,由于年度运营时间较低,生物质量到电动性不会经常派遣,并且在经济上变得不那么经济。可以通过通过“可逆”固体氧化细胞堆积整合生物质到电力和 - 化学化来解决此问题,从而形成三模式电网平衡植物,该植物可以在发电,电源存储和电力中性(具有化学生产)模式之间灵活切换。本文考虑了不同的技术组合和多个目标功能以获得各种设计替代方案,研究了这种植物概念的最佳设计。结果表明,提高的植物效率将增加给定生物质饲料所需的总细胞面积。不同技术组合之间具有相同气化器类型的效率差异小于5%。发电模式的效率最高可达到50%–60%,电源存储模式为72%–76%,功率中性模式为47%–55%。惩罚未在堆栈中转换的合伙人时,最佳植物设计与有限范围内的电气和气电网相互作用。蒸汽轮机网络可以恢复0.21-0.24 kW的每千瓦干燥生物质能(较低的加热值),这对应于效率提高高达20%。在不同模式下传递的热量的差异挑战了公共热交换网络的设计。
执行摘要 作为“清洁能源校园”计划的一部分,伯克利校园计划更换其现有的、老化的化石燃料热电联产厂和蒸汽系统,并将伯克利校园改造成 100% 电气化和可再生能源微电网,从而将校园碳排放量减少 85%。该基础设施更新计划将包括一个新的电气化供热和制冷厂 (EHCP);向大约 100 栋校园建筑中的 1200 多万平方英尺空间输送热水/冷水;分布式能源资源 (DER),包括太阳能光伏、电池存储、地热热交换和燃料电池,以提高效率和关键负载备份;以及升级校园电力基础设施,以支持翻倍的电力需求。校园的目标是到 2028 年让新系统的大部分投入运营,到 2031 年基本完工。除了解决校园碳排放问题外,该项目还使校园能够解决其能源基础设施的大量修复和更新需求。加利福尼亚州已在 2023 年州预算法案中拨出州普通基金,以支持校园清洁能源校园项目的外部融资。1 校董会被要求:(1) 批准 4000 万美元的初步计划资金,以及 (2) 批准由州普通基金拨款支持的 4000 万美元外部融资。在初步计划期间,校园将确认项目范围和预算;完成 EHCP 和 DER 的现场调查和岩土测试;确认建筑物的初始配电连接;确认所需的电力基础设施改进;并根据《加州环境质量法案》(CEQA) 完成环境审查。校园预计将于 2024 年秋季根据 CEQA 采取行动后,返回校董会进行全面预算和设计批准。
在俄勒冈州Tualatin的联合协会(UA)本地290培训设施的现场现场发生的可选活动。可以25美元的价格添加到您的注册中;仅限56名参与者。3月4日,星期二 - 热水论坛7:00 AM - 7:00 PM注册7:30 - 8:20 AM早餐8:20 - 8:50 AM欢迎并介绍9:00 - 10:30 AM并发会议1A。如何获得热泵热水器的热量,许多建筑物未设计,修改和用于使用空气源热泵热水器(HPWH)的最佳服务。本届会议介绍了如何在安装故障时确保最佳性能,尤其是空气供应不足以进行热交换和处理冷排放空气。主持人:Harvey Sachs,Aceee,确保在不理想的空间中HPWH效率Sam Larson,Larson Energy Research Research Air-Sour-Sour-Source HPWH:温暖的进气空气来自哪里?冷排气空气在哪里?Gary Klein,Gary Klein,在80座建筑物和生长中的中央水平排水热回收:设计和测量的性能Gerald Van Decker,可再生能源公司1B。商业食品服务热泵热水器在住宅应用中是一种已久经考验的技术,但仅在有限的商业食品服务中应用。这为不熟悉HPWH设计校长,规范和性能以及环境健康(EH)专业人员的运营商和设计师构成了挑战,他们负责批准HPWHS。本届会议分享了最新的实验室和现场研究信息HPWH性能以及实用的设计建议和当前的HPWH政策。
奔萨国立大学,奔萨,俄罗斯 Alexey-grishko@rambler.ru 摘要。背景。根据现代火箭和航天技术发展的理论,机载无线电电子设备系统的控制和管理极其重要。对可靠性的要求越来越高,并且用于各种用途的无线电电子设备(尤其是机载设备)的部署密度也越来越高,这大大限制了使用通风和对流在多层无线电电子模块中散热的可能性。同时,传导散热方法涉及使用热维护系统、特殊的热交换材料来密封无线电电子设备的元件。在许多情况下,不平衡的温度状态会导致传感器误差增加,从而导致整个火箭和航天技术综合体的稳定性受到破坏。这项研究的目的是分析和开发具有解析解的无线电电子模块传热过程的数学模型。材料和方法。提出了一种数学模型,用于分析和提供无线电电子模块中的热状态,该模块为准均质各向异性平行六面体,在稳定温度的条件环境中放置固定体积或平面热源。结果和结论。这种方法可以实现以下步骤:用更简单的热源替换复杂的空间排列;用具有有效传热特性值的准均质区域替换具有异质结构的多组分子系统;用描述区域边缘传热过程的量的空间排列替换它们的平均值。所提出的方法可以大大简化温度的计算值,这些模型可广泛应用于计算、测量和分析高密度无线电电子设备的无线电电子模块中的热状态,是热物理设计和确保火箭航天和特殊设备机载无线电设备稳定运行的便捷工具。
热力学是在 19 世纪发展起来的,它为机械科学和温度测量学提供了统一的框架。当时,其动机非常实用,即利用温度使物体运动 - 正如其名称所表明的那样。换句话说,目标是设计和优化热机,即利用某些“工作物质”的转化将热量转化为功的设备。功和热是交换能量的两种方式,根据热力学第一定律,可以将一种转换为另一种。然而,将热量转化为功就像将铅变成金子一样:它有严格的限制。最著名的是开尔文的“不行”陈述:不可能从单个热水浴中循环提取功。这个“不行”的陈述原来是热力学第二定律的表达之一,它涉及(不可)逆性。这就是物理学的一个最初应用领域如何产生熵和时间箭头等基本概念。事实上,功和热之间的第一个界限与它们交换的(不可)逆性质密切相关。功的概念来自机械科学,代表一种可以可逆交换的能量形式:原则上,没有与功交换相关的时间箭头——至少至少与保守力有关的力是不可逆的。相反,物体与热浴之间的热交换一般是不可逆的:热量会自发地从热物体流向冷物体。具体而言,如果物体与温度为 T h 的热浴循环交换一定量的热量 Q ,与温度为 T c 的冷浴循环交换一定量的热量 − Q ,则热传递的不可逆性质可用现象学公式 Q ( 1 / T c − 1 / T h ) ≥ 0 来描述,如果 T c = T h ,则等式成立。通过这一观察,我们可以将物体与温度为 T 的浴接触时的熵变定义为 ∆ S = Q rev / T ,其中 Q rev 是可逆交换的热量。更多
本文概述了传统的地热系统和非传统地热发展,作为能源专业人员之间的讨论所需的共同参考。常规的地热系统具有热量,渗透性和流体,仅需钻至<3.5 km。低温(LT)系统无处不在,具有<100°C,正常的热流或放射性花岗岩作为热源,并用于区域加热。中温度(MT)100˚C -190˚C和高温(HT)190˚C -374˚C资源主要在板界处,带有火山侵入性热源,主要用于发电。单井容量<2 MWE和<5 mW(LT),<7 MWE和<15 MW(MT),<25 MWE和<125 MW(HT)。非常规地热替代品具有热量(8˚C -500˚C)和一系列深度(1 m至20 km),但缺乏渗透性或液体,因此可以通过传导来刺激刺激。HVAC在井中的深度为1-2 m且浅地热降至500 m,均捕获<25°C,<10 kW且<5 mW且<5 mW的单位容量。Technologies targeting ≤ 500˚C are ei- ther advanced by geothermal developers at <7 Km depth (Enhanced Geo- thermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geother- mal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling降至20公里)。他们的primary目的是发电,依靠闭环,但是EGS在压裂过程中使用断裂与地震风险进行热交换。无与伦比的方法可能无处不在,浅地热已经起作用。更深,更热的非常规的替代方案仍然是经验丰富的,克服的成本和技术挑战,使其变得完全商业化。同时,传统的地热资源仍然是
摘要。这项研究深入研究了使用简化的耦合模型的大气阻塞,区域和过渡模式的可预测性。该模型在Python中实现,模拟了中纬度大气动力学,并在β平面上具有两层准地藻道大气,其中包含简化的土地效应。实际上,我们全面审查了该模型对环境参数的响应,例如太阳辐射,表面摩擦和大气 - 地面热交换。我们的发现确认该模型忠实地复制了现实世界中的地球风格制度,为进一步的分析建立了强大的基础。随后,采用高斯混合物聚类,我们成功地描绘了独特的阻塞,区域和过渡流动性,从而揭示了其对表面摩擦的依赖性。为了衡量可预测性和持久性,我们计算每个制度的局部Lyapunov指数。我们的调查发现了区域,阻塞和过渡方案的存在,尤其是在表面摩擦减少的条件下。随着表面摩擦的进一步增加,系统转变为以两个阻塞制度和过渡制度为特征的状态。引人入胜的是,周期性行为在特定的表面摩擦值下出现,返回到低摩擦系数下观察到的模式。模型分辨率的增加会影响系统的影响,使得仅通过聚类获得两个制度:过渡阶段消失,而其余两个方案的可预测性下降到大约2 d。根据先前的研究发现,我们的研究强调了一个事实,即与阻塞模式相比,当所有三个制度共存时,区域模式都具有更广泛的可预测性范围。非常明显,与其他制度共存时,过渡模式显示出降低的可预测性。此外,在发现两个封锁状态的表面摩擦值范围内,可以观察到,在应用地形的西部西部的封闭大气情况下,不稳定性和可预测性降低,而与地形东部东侧出现的阻滞相反。
电动汽车已成为国家战略重点,对未来交通运输、工业发展、能源安全、空气质量改善等都具有重要意义。发展高效、低碳的热管理技术已成为打造更安全、舒适、节能、环保的电动汽车的重要方面之一。由于冬季发动机热回收功能缺失,电池、电机、电控设备对温度的敏感性较高,先进的热管理技术对电动汽车的续航里程、安全性、动力性、寿命和可靠性的影响越来越重要。目前,电动汽车热管理技术的发展主要集中在高效电池热管理、低碳热系统技术、集成节能热系统和智能控制技术等方面,旨在打造功能集成、结构模块化、控制智能化的绿色高效系统。在此,我要向中国科学院何雅玲院士表示诚挚的感谢,感谢她提供平台,邀请我们组织汽车热管理专题讨论。本专题主要介绍该领域的最新科技进展。我们很高兴呈现了六篇高质量的文章,涵盖了低碳热系统技术、高效系统关键部件、先进热交换技术以及高效电池热管理技术等主题。这些论文突出了与制冷剂替代品相关的最值得关注的系统和部件技术,以及与电池热管理相关的最新技术。本专题的工作为汽车热管理前沿技术的未来发展提供了宝贵的见解和方向。我衷心感谢所有作者分享他们的研究和发现,并感谢他们为本专题付出的时间和精力。我希望它能帮助读者更深入地了解电动汽车热管理,并激励更多的研究人员探索这一重要领域。随着学术界的日益关注,我们希望加速汽车热管理技术的发展,解决电动汽车当前面临的技术挑战,促进其快速而强劲的增长。最后,我要向审稿人、编辑和出版制作团队表示深深的谢意,感谢他们的辛勤工作、坚定不移的支持、奉献和热情。没有他们的努力,本专题的成果和成功就不可能实现。
自20世纪30年代以来,人们就已认识到服装在人类生物气象学研究中的重要性(例如,Winslow等人,1937年;Gagge等人,1938年;Winslow等人,1938年;Gagge等人,1941年)。在这些研究中,人们运用实验和理论工具研究了服装的作用,将其作为人体-大气界面的一个重要输入变量。在20世纪下半叶(例如,Auliciems和de Freitas,1976年;de Freitas,1979年),服装被视为并被解读为人类对环境条件的“反应”,并被分析为一个决定性模型的输出。如今,服装对生物气象热调节的影响通常以两种方式考虑:作为热生理模型(例如,Fiala 等人,2012)的输入参数(例如,Havenith 等人,2012)或作为代表热适应行为的模型输出(Lin,2009;Potchter 等人,2018)。在这种情况下,r cl 可用作表示人体热交换不平衡程度的量度。当热量过剩时,人体需要冷却以达到能量平衡。此时 r cl 值为负。请注意,在迄今为止发表的研究中根本没有考虑负服装阻力值,而只是将其等于零,理由是“由于在公共场合裸体是不可接受的,因此 clo 值 ≤ 0 被设置为零”(Yan,2005)。本研究中也使用了负的服装阻力值,因为当服装被视为一种热调节器而忽略其对人体行为的依赖性时,这些值是可以解释的。相反,当存在热量不足时,人体需要变暖才能达到能量平衡。在这种情况下,r cl 值为正。当人体处于能量平衡状态时,既不需要冷却也不需要变暖,感觉这种状态很舒适。在这种情况下,r cl 非常接近或等于零。服装阻力参数是一个复数,因为它取决于人和环境的特征。在人类特征中,个人、社会方面以及活动类型是最具决定性的。活动类型决定代谢活动率,该率在 40 到 600 Wm − 2 之间变化
地热交换钻孔场 我们计划钻探 2,000 个地热交换钻孔,目前已完成一半以上,以在校园范围内推广地热交换技术的使用。刘易斯艺术中心、湖畔研究生宿舍、劳伦斯公寓、布隆伯格、巴特勒学院、新学院西校区和叶学院目前均已在使用这项技术。 TIGER 和 CUB 这些新建筑将容纳扩展地热交换供暖和制冷系统所需的热泵和电气设备。TIGER(热集成地热交换资源)和 CUB 不是后台服务建筑,而是将融入校园,支持普林斯顿对可持续发展的承诺。每栋建筑附近的两个热能储存罐 (TES) 用于储存热水和冷水。 转换为区域热水 我们正在安装超过 13 英里的新地下热水分配管道,将蒸汽热能转换为热水热能。热水所需的管道设计与目前用于蒸汽分配的不同,这两种技术背后的科学原理也不同。最终,新的热水管道和新系统将使每栋校园建筑都能使用地热交换供暖和制冷。改造普林斯顿的冷冻水厂我们已经将以可靠性和能源效率而闻名的 Cogen 电厂从冷冻水厂和热电联产 (CHP) 蒸汽厂改造为采用热水地热交换技术的更名后的西电厂。Cogen 将与 TIGER 一起运营,以高效(经济和热能)满足校园供暖、制冷和部分电力负荷需求。这两家电厂还将互连,以便每个电厂都可以部分地相互备份。改造建筑系统完成校园地热交换的一个重要步骤是改造现有校园建筑的供暖和制冷系统。这些改造将持续多年。完全改造后,大学将使用地热交换系统为 180 多栋建筑供暖和制冷,每年节省数百万美元。