成立于2021年,TCB致力于通过在全球范围内开发和部署基于创新的,基于农业的二氧化碳(CDR)和存储技术来应对气候变化的关键挑战。我们的微型公益解决方案利用工业大麻作为传统农业中的旋转作物的力量来局部生产生物炭。通过通过受控的热分解将工业大麻生物量转化为生物炭,我们可以以稳定的形式有效捕获和存储碳。应用于土壤时,生物炭不仅会隔离碳,还可以增强土壤微生物活性,减少一氧化二氮(N2O)和甲烷(CH4)的排放 - 有效的温室气体。碳固存和减少排放的组合使生物炭成为缓解气候变化的强大工具。
吸入时:吸入粉尘可能会刺激呼吸系统。吸入燃烧或加热产生的烟雾可能会引起聚合物烟雾热,这是一种短暂的流感样疾病,伴有发烧和发冷。可能出现以下症状:鼻子、喉咙、肺部刺激、咳嗽、不适、呼吸困难、头痛、头晕、恶心、呕吐。症状通常在 2 小时后出现,并在接下来的 36 至 48 小时内消退。长期接触:可能对肝脏和肾脏造成损害。与皮肤接触后:热分解产物或气溶胶会引起刺激。其他症状:皮肤瘙痒发红和水肿(肿胀)。熔化的产品可能导致严重烧伤。与眼睛接触后:工艺蒸汽会刺激眼睛。粉尘与眼睛接触会导致机械刺激。医生信息
回收扁平玻璃的收益约占英国玻璃市场的24%(图1)。制造商始终将效率视为保持竞争优势的一种方式。这采取了技术改进的形式,以最大程度地减少加工产量损失,炉子技术的进步和燃油转换,现场能量效率的改善和废热恢复过程。玻璃碎片称为Cullet是玻璃制造过程的关键部分。Cullet在熔融阶段有助于批处理原材料的均质化,还可以帮助控制粘度水平。Cullet还带来了环境的好处。|它降低了材料的熔化温度。|由于碳酸盐原材料的减少,在热分解过程中释放了CO 2的副产品,因此它减少了CO 2排放。|它减少了对原材料的需求。
摘要:采用异种金属丝电子束增材制造技术在不锈钢基体上混合 5、10 和 15 vol.% Ti-Al-Mo-ZV 钛合金和 CuAl9Mn2 青铜,研究了制备的合金的微观结构、相和力学性能。结果表明,含 5 vol.% 钛合金的合金形成了不同的微观结构,含 10 和 15 vol.% 钛合金的合金也形成了不同的微观结构。第一种合金的特征是结构成分为固溶体、共晶金属间化合物 TiCu 2 Al 和粗大 γ 1 -Al 4 Cu 9 。它具有增强的强度并在滑动试验中表现出稳定的氧化磨损。另外两种合金还含有由于 γ 1 -Al 4 Cu 9 热分解而出现的大花状 Ti(Cu,Al) 2 树枝状晶粒。这种结构转变导致复合材料的灾难性脆化和磨损机制从氧化变为磨料。
摘要:薄膜上和晶体内部的激光干扰图案是今天创建用于光学数据处理所需模式的功能强大的工具。在这里,我们分别通过水解吸和热分解过程在金属有机框架(MOF)薄膜上表现出可逆和不可逆的激光干扰。已经实现了不可逆的干扰模式,其带有高达5 µm的条带的不可逆转的干扰模式已经实现,并且使用共焦拉曼和反射光谱以及原子力显微镜表征了其形态。我们透露,将干扰最大值之间的距离从10.5降低到MOF的5 µm记录,使不可逆模式的表面粗糙度增加了10倍。另一方面,可逆的激光模式提供了可变光学对比度的完全无损的效果。获得的实验结果为使用MOF晶体作为光敏材料的模板图中所需模式的模板图中的光敏材料开放了前景。
1. 引言 活性炭是一种具有高表面积和孔隙率的碳质材料。它来源于碳含量较高的富碳有机前体,例如煤、聚合物或生物质,在高温下对这些材料进行物理或化学活化以增加碳含量[1]。换句话说,活性炭是通过热分解碳含量较高的富碳有机材料获得的。文献中明确定义活性炭是通过富碳有机材料的物理或化学活化获得的[2]。简而言之,物理活化可以通过单阶段[3]或两阶段[4]过程进行。在常用的两阶段过程中,富碳材料的碳化是在惰性气氛中的反应器中实现的,然后使用CO 2 、蒸汽、空气或它们的混合物进行活化以增加表面积和孔隙率[5]。化学活化工艺是一个单阶段工艺,其中将碳质材料与活化剂(例如氢氧化钾、磷酸和氯化锌)混合,然后在惰性气氛下施加高温获得活性炭 [1]。其目的是通过使用任一活化工艺来合成高表面积和高孔隙率的活性炭材料。
耐电弧性 IPC-650 2.5.1 秒 242 秒 242 弯曲强度 (MD) IPC-650 2.4.4 kpsi 24 16 N/mm 2 165 弯曲强度 (CD) IPC-650 2.4.4 kpsi 15 8 N/mm 2 103 拉伸强度 (MD) ASTM D 3039 psi 16,800 N/mm 2 116 拉伸强度 (CD) ASTM D 3039 psi 11,000 N/mm 2 75.8 杨氏模量 (MD) ASTM D 3039 psi 10 6 N/mm 2 8,343 杨氏模量 (CD) ASTM D 3039 psi 10 6 N/mm 2 7,171 泊松比 (MD) ASTM D 3039 0.14 0.14 泊松比 (CD) ASTM D 3039 0.10 0.10 断裂应变 (MD) ASTM D 3039 % 1.6 % 1.6 断裂应变 (CD) ASTM D 3039 % 1.4 % 1.4 压缩模量 (Z 轴) ASTM D 695 (23ºC) kpsi 385 N/mm 2 2,650 剥离强度 (1 盎司 VLP) IPC-650 2.4.8 (热应力) 磅/英寸 12 N/mm 2.1 剥离强度 (1 盎司 VLP) IPC-650 2.4.8.3 (150ºC ) (高温) 磅/英寸 14 N/mm 2.5 剥离强度 (1 盎司VLP)IPC-650 2.4.8秒5.2.3 (Proc. Chemicals) 磅/英寸 11 N/mm 2.0 密度 (比重) gm/cm 3 2.28 gm/cm 3 2.28 比热 ASTM E 1269 (DSC) (100ºC) J/g/K 0.99 J/g/K 0.99 热导率 ASTM F 433 W/M*K 0.29 W/M*K 0.29 T d (热分解温度) IPC-650 2.4.24.6 2% 重量损失 ºC 528 ºC 528 T d (热分解温度) IPC-650 2.4.24.6 5% 重量损失 ºC 547 ºC 547 CTE (x) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 10 8 ppm/ºC 8 热膨胀系数 (y) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 13 10 ppm/ºC 10 热膨胀系数 (z) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 108 104 ppm/ºC 108
由于硼原子的共价半径低和SP 2杂交能力,在其他材料中至少存在连接的二十面体的大量多晶型物。其中之一是硼苯,一种令人兴奋的新纳米材料,具有广泛的能量用途。理论和实验研究证明了唯一的二维(2D)材料的存在。唯一的高磁传导率,理论特异性能力和离子传输特性使其成为能源应用中有前途的候选者(EAS)。在这项研究中,首先提到了唯一的唯一的结构,化学和物理特性。因此,就合成方法而言,自上而下和自下而上的技术,例如超高真空(UHV),化学蒸气沉积(CVD),超声量剥落(EXS),分子束外座(MBE)(MBE)和多步热分解(MTD)进行了讨论。最后,提到了它用作高金属离子电池,氢存储(HS),纳米电子应用氢进化反应(HER)的催化剂。
野火是一个复杂的多尺度过程,受与其他地球过程的非线性尺度相关相互作用的影响。导致火灾的物理过程发生在很宽的尺度范围内。虽然天气过程的特征尺度范围超过 5 个数量级,从大型天气系统的百公里尺度到小尺度效应和涡流的米尺度,但与燃料热分解和燃烧相关的化学反应发生在厘米或更小的尺度上,产生的火焰长度高达 60 米。火线以平均速度传播,速度约为几分之一米/秒,同时产生的火焰以 50 米/秒的速度传播,化学反应发生在数秒或更短的量级。火灾产生的风和浮力属于极端大气现象。天气是影响火灾行为的主要外部因素,火灾与大气之间的双向相互作用至关重要——众所周知,火灾会极大地影响其周围的天气。火灾通过动量、水蒸气和热量的流动与大气动力学相互作用,并通过水分和热量保持与土壤相互作用。