ACE 可负担清洁能源规则 BSER 最佳减排系统 Btu 英热单位 CAA 清洁空气法案 CBI 机密商业信息 CCS 碳捕获和封存/储存 CCUS 碳捕获、利用和封存/储存 CO 2 二氧化碳 DER 分布式能源 DOE 能源部 EEA 能源紧急警报 EGU 发电机组 EIA 能源信息署 EJ 环境正义 EO 行政命令 EPA 环境保护署 FEED 前端工程和设计 FGD 烟气脱硫 FR 联邦公报 GHG 温室气体 GW 吉瓦 GWh 吉瓦时 HAP 有害空气污染物 HRSG 热回收蒸汽发生器 IIJA 基础设施投资和就业法案 IRC 国内税收法典 kg 公斤 kWh 千瓦时 LCOE 平准化电力成本 LNG 液化天然气 MATS 汞和空气毒物标准 MMBtu/h 百万英热单位每小时 MMT CO 2 e 百万公吨二氧化碳当量 MW 兆瓦 MWh 兆瓦时NAAQS 国家环境空气质量标准 NESHAP 国家有害空气污染物排放标准 NGCC 天然气联合循环
ADB - 亚洲开发银行 APSCL - 阿舒甘杰发电站有限公司 BAN - 孟加拉国 BELI - 孟加拉国高效照明倡议 BERC - 孟加拉国能源管理委员会 BIDS - 孟加拉国发展研究院 BIWTA - 孟加拉国内河运输管理局 BNBC - 孟加拉国国家建筑规范 BPDB - 孟加拉国电力发展委员会 CAPE - 对流可用势能 CCPP - 联合循环发电厂 CDM - 清洁发展机制 CFL - 紧凑型荧光灯 CNG - 压缩天然气 CTG - 吉大港 DoE - 环境部 DPDC - 达卡配电公司 EA - 执行机构 ECR - 环境保护规则 EGCB - 孟加拉国发电公司 EIA - 环境影响评估 EMP - 环境管理计划 EMRD - 能源和矿产资源部 EPC - 工程采购施工承包商 ETP - 污水处理厂 FGD - 焦点小组讨论 GoB - 孟加拉国政府 HRSG - 热回收蒸汽发生器 HSE - 健康、安全和环境 IDCOL - 基础设施发展有限公司 IEE - 初步环境检查NGO - 非政府组织 NEMAP - 国家环境管理行动计划 NO x - 氮氧化物 O&M - 运营和维护 Petrobangla - 孟加拉国石油、天然气和矿产公司 PGCB - 孟加拉国电网公司 PIC - 项目实施顾问 PPTA - 项目准备技术援助
ADB - 亚洲开发银行 APSCL - 阿舒甘杰发电站有限公司 BAN - 孟加拉国 BELI - 孟加拉国高效照明倡议 BERC - 孟加拉国能源管理委员会 BIDS - 孟加拉国发展研究院 BIWTA - 孟加拉国内河运输管理局 BNBC - 孟加拉国国家建筑规范 BPDB - 孟加拉国电力发展委员会 CAPE - 对流可用势能 CCPP - 联合循环发电厂 CDM - 清洁发展机制 CFL - 紧凑型荧光灯 CNG - 压缩天然气 CTG - 吉大港 DoE - 环境部 DPDC - 达卡配电公司 EA - 执行机构 ECR - 环境保护规则 EGCB - 孟加拉国发电公司 EIA - 环境影响评估 EMP - 环境管理计划 EMRD - 能源和矿产资源部 EPC - 工程采购施工承包商 ETP - 污水处理厂 FGD - 焦点小组讨论 GoB - 孟加拉国政府 HRSG - 热回收蒸汽发生器 HSE - 健康、安全和环境 IDCOL - 基础设施发展有限公司 IEE - 初步环境检查NGO - 非政府组织 NEMAP - 国家环境管理行动计划 NO x - 氮氧化物 O&M - 运营和维护 Petrobangla - 孟加拉国石油、天然气和矿产公司 PGCB - 孟加拉国电网公司 PIC - 项目实施顾问 PPTA - 项目准备技术援助
ADB - 亚洲开发银行 APSCL - 阿舒甘杰发电站有限公司 BAN - 孟加拉国 BELI - 孟加拉国高效照明倡议 BERC - 孟加拉国能源管理委员会 BIDS - 孟加拉国发展研究院 BIWTA - 孟加拉国内河运输管理局 BNBC - 孟加拉国国家建筑规范 BPDB - 孟加拉国电力发展委员会 CAPE - 对流可用势能 CCPP - 联合循环发电厂 CDM - 清洁发展机制 CFL - 紧凑型荧光灯 CNG - 压缩天然气 CTG - 吉大港 DoE - 环境部 DPDC - 达卡配电公司 EA - 执行机构 ECR - 环境保护规则 EGCB - 孟加拉国发电公司 EIA - 环境影响评估 EMP - 环境管理计划 EMRD - 能源和矿产资源部 EPC - 工程采购施工承包商 ETP - 污水处理厂 FGD - 焦点小组讨论 GoB - 孟加拉国政府 HRSG - 热回收蒸汽发生器 HSE - 健康、安全和环境 IDCOL - 基础设施发展有限公司 IEE - 初步环境检查NGO - 非政府组织 NEMAP - 国家环境管理行动计划 NO x - 氮氧化物 O&M - 运营和维护 Petrobangla - 孟加拉国石油、天然气和矿产公司 PGCB - 孟加拉国电网公司 PIC - 项目实施顾问 PPTA - 项目准备技术援助
ADB - 亚洲开发银行 APSCL - 阿舒甘杰发电站有限公司 BAN - 孟加拉国 BELI - 孟加拉国高效照明倡议 BERC - 孟加拉国能源管理委员会 BIDS - 孟加拉国发展研究院 BIWTA - 孟加拉国内河运输管理局 BNBC - 孟加拉国国家建筑规范 BPDB - 孟加拉国电力发展委员会 CAPE - 对流可用势能 CCPP - 联合循环发电厂 CDM - 清洁发展机制 CFL - 紧凑型荧光灯 CNG - 压缩天然气 CTG - 吉大港 DoE - 环境部 DPDC - 达卡配电公司 EA - 执行机构 ECR - 环境保护规则 EGCB - 孟加拉国发电公司 EIA - 环境影响评估 EMP - 环境管理计划 EMRD - 能源和矿产资源部 EPC - 工程采购施工承包商 ETP - 污水处理厂 FGD - 焦点小组讨论 GoB - 孟加拉国政府 HRSG - 热回收蒸汽发生器 HSE - 健康、安全和环境 IDCOL - 基础设施发展有限公司 IEE - 初步环境检查NGO - 非政府组织 NEMAP - 国家环境管理行动计划 NO x - 氮氧化物 O&M - 运营和维护 Petrobangla - 孟加拉国石油、天然气和矿产公司 PGCB - 孟加拉国电网公司 PIC - 项目实施顾问 PPTA - 项目准备技术援助
钻孔储热系统利用附近的多个钻孔将能量直接储存在地下,热载体(通常是水)在钻孔中循环。到目前为止,以输送热量为目的的钻孔储热主要用于储存太阳能热能。然后,钻孔储热被纳入太阳能供暖系统,用于为单个住宅区供暖,以减少太阳辐射和供暖需求之间的季节性不匹配,并增加供暖系统中太阳能的比例。对于这种钻孔热存储应用,存储的能量可以通过太阳能集热器表面的大小来控制。然而,对于工业钻孔储热应用,可储存的能量取决于设施中可用的多余热量。此外,一个行业通常有几种耗能过程,由于操作随时间变化以及产生热量的不同质量,需要对哪些过程应集成到热回收系统中以及如何设计钻孔储热本身进行选择。此外,计算工业设施中可供储存的热量时,需要对储存过程中要包括的各个热流进行测量数据,这意味着,对于工业钻孔储热应用,这必须比用于太阳能储存的钻孔储热更加具体地进行,对于太阳能储存的钻孔储热,大多数位置都可以直接获得用于此计算的历史太阳辐射数据。
货币等值(截至 2011 年 6 月 3 日) 货币单位 - 印度卢比 (INR) 1.00 卢比 = 0.02243 美元 1.00 美元 = 44.59 卢比 缩写 ADB - 亚洲开发银行 APSCL - 阿舒甘杰发电站有限公司 BAN - 孟加拉国 BELI - 孟加拉国高效照明倡议 BERC - 孟加拉国能源管理委员会 BIDS - 孟加拉国发展研究院 BIWTA - 孟加拉国内河运输管理局 BNBC - 孟加拉国国家建筑规范 BPDB - 孟加拉国电力发展委员会 CAPE - 对流可用势能 CCPP - 联合循环发电厂 CDM - 清洁发展机制 CFL - 紧凑型荧光灯 CNG - 压缩天然气 CTG - 吉大港 DoE - 环境部 DPDC - 达卡配电公司 EA - 执行机构 ECR - 环境保护规则 EGCB - 孟加拉国发电公司 EIA - 环境影响评估 EMP - 环境管理计划 EMRD - 能源和矿产资源部 EPC - 工程采购施工承包商 ETP - 废水处理厂 FGD - 焦点小组讨论 GoB - 孟加拉国政府 HRSG - 热回收蒸汽发生器 HSE - 健康、安全和环境 IDCOL - 基础设施发展有限公司 IEE - 初步环境检查 NGO - 非政府组织 NEMAP - 国家环境管理行动计划 NO x - 氮氧化物 O&M - 运营和维护 Petrobangla - 孟加拉国石油、天然气与矿产公司
为了实现欧盟在 2050 年实现碳中和的目标并加速向可持续能源系统的过渡,需要在可再生能源生产、能源效率提高、技术开发和广泛电气化之间实现协同作用。本文提出了一种可持续可再生能源供应网络的综合方案,以实现欧盟在 2050 年前向 100% 可再生能源系统的过渡,重点关注各个部门的热电终端用户,以实现部门之间的更多协同作用,从而提高能源系统的整体效率。本文结合存储技术,考虑了来自不同可再生能源的可再生电力、热能、第一代、第二代和第三代生物燃料、氢气和生物产品的生产和供应。建立了一个动态混合整数线性规划模型,以最大化综合标准可持续性净现值为目标,同时优化所有可持续性支柱。结果显示了住宅部门、服务业和运输部门电气化对加速向可持续能源未来的过渡的影响。可再生电力驱动的热泵似乎是满足住宅和服务业供暖需求的关键技术,分别占最终消费的 55% 和 61%。结果还揭示了生物质热电联产系统的作用,其热回收可满足住宅部门 33% 的可再生能源热需求和服务业 28% 的热量需求。交通运输部门的最终能源消费中电力份额预计将达到 52%。到 2050 年,住宅、服务和交通运输部门的电力需求预计将几乎是目前需求的两倍。
当今,发电厂工程师主要关注如何最大限度地提取燃料能量。这一目标涉及根据热力学第一定律和第二定律提高不同热力学要素和整个循环的效率。为实现这一目标,工程师们采用了各种旨在提高这些效率的技术。在目前的研究中,所使用的一种技术是用不同的工作流体替代水/蒸汽。通过改变工作流体,工程师们旨在优化发电厂的热力学性能。在本研究中,分析重点是氨水混合物与跨临界二氧化碳在热回收蒸汽发生器中的应用。研究结果表明,实现的最高功输出和第二定律效率分别为 1192 kJ/秒和 81.68%。当顶部循环压力设置为 50 bar,并且涡轮机入口温度分别为 500°C 和 300°C(氨水混合物和跨临界二氧化碳)时,可获得这些最佳值。此外,当顶循环压力设置为 50 bar、底循环压力设置为 160 bar 且涡轮机入口温度为 300°C 时,可观察到 43.57% 的最大第一定律效率。分析还表明,热源是造成大部分能量破坏的原因,在 500°C 的温度下,最多有 1970 kJ/秒的可用能量被破坏。为了实现热力学性能参数的最高值,建议在吸收器和冷凝器中保持低压。此外,分析表明,当冷凝器压力设置为 70 bar 时,发电成本达到峰值,达到 0.050 美元/千瓦时。
苯是一种化学原料,在生产高能固液燃料和聚合物时被广泛使用,无可替代。因此,全球每年对苯的需求量达到 5100 万吨。利用 Peng-Robinson 状态方程性质包,过程模拟器已用于模拟通过甲苯加氢脱烷基化生产苯的反应器系统。该系统设计为每年生产 200,000 吨苯,并采用优化的热流机制。通过使用利用废热锅炉 (WHB-01) 和部分冷凝器 (PC-01) 的热流出口的热回收策略,通过将热流分别引导至加热器 H-01 和 H-02,总共节省了 -23,915,490.40 kJ/h,有效地降低了模拟中的净能量。考虑到这一策略,反应器系统内的改进工艺比基本工艺系统更加优化。版权所有 © 2024 作者,由 Universitas Diponegoro 和 BCREC Publishing Group 出版。这是一篇根据 CC BY-SA 许可开放获取的文章(https://creativecommons.org/licenses/by-sa/4.0)。关键词:苯;甲苯;加氢脱烷基化;模拟;净能量优化 引用方式:EI Maulana、A. Tarikh、RT Widaranti,(2024 年)。通过优化反应器系统中的传热单元,最大限度地降低加氢脱烷基化甲苯工艺生产苯的能耗。化学工程研究进展杂志,1 (2),97-107(doi:10.9767/jcerp.20167)永久链接/DOI:https://doi.org/10.9767/jcerp.20167