基于电源材料的制冷系统被认为是当前基于蒸气压缩设备的潜在替代方案。这些系统提供更接近Carnot限制的晶状体,同时还与微型化,紧凑性和集成到电子设备和可穿戴设备中。已经提出了几种原型,主要依靠机械和流体运动进行传热,这阻止了这些系统达到更高的操作频率,良好的热接触和低损失。一动不动的电源固态设备已经概念化了,但是它们的相对复杂性已阻碍了原型。在这项工作中,我们研究了依靠热电开关来控制热流的固态电局冷却器的性能。我们的设备操作模式通过通过热开关被动吸收热量来最大程度地减少能源消耗。在稳态热传播模型之后,评估了一组广泛的参数,覆盖运行温度,材料特性,几何特征,操作频率和材料极化损失,评估了一组广泛的参数,评估了施加的电流,吸收的热量,功耗和性能。我们估计COP高于1的COP,最大温度(对于不同的材料特性,几何因素或EC损失)和绝热温度的变化比施加的温度跨度高1 k。较高的温度跨度在6至10 K的率COP之间的0.1阶段,导致功耗显着增加。这些结果旨在在选择材料,温度和几何形状方面指导对这些固态设备的研究。
Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
摘要 热管理是现代电子、航空电子、汽车和储能系统中面临的重要挑战。虽然通常使用被动热解决方案(如散热器或散热器),但主动调节热流(例如通过热开关或二极管)将提供对热瞬变管理和系统可靠性的额外控制程度。本文我们报告了第一个基于柔性、可折叠石墨烯膜的热开关,其工作电压低(约 2 V),热开关比高达约 1.3。我们还采用主动模式扫描热显微镜来实时测量设备行为和开关。针对基于双夹悬浮膜的热开关的一般情况,开发了一个紧凑的分析热模型,突出了热设计和电气设计挑战。系统级建模展示了调节温度波动和平均温度作为开关比的函数之间的热权衡。这些基于石墨烯的热开关为在密集集成系统中主动控制快速(甚至纳秒)热瞬变提供了新的机会。