致密组织,即使由于激素变化,热成像也不会受到影响。热成像单独使用时的灵敏度为 83%,与 MRI 结合时的灵敏度为 95%。这也具有较高的假阳性率和假阴性率,但可以通过使用增强方法进一步降低。脑热成像的工作原理是发现大脑表面温度的升高。该方法使用各种技术来分析大脑,如颜色分析、不对称分析、人工神经网络、特征提取、数据挖掘技术、分割方法、顺序特征选择技术等。使用热成像检测脑癌始于筛查脑部并分析获得热图的热变化。观察图像,然后按照有序序列开始进一步处理,如预处理、分割、特征提取、分类和后处理。
小型廉价卫星立方体卫星通常用于进行学术和商业太空研究。通常,立方体卫星没有热控制系统来散发航空电子设备的热量,这会限制机载计算和有效载荷功率。升华器是一种体积小、被动热控制技术,拥有 60 年的飞行历史,可让立方体卫星搭载更强大的计算机并进行更复杂的实验。升华器使用水这种消耗品;它们的尺寸和被动特性对于体积受限且持续时间短的立方体卫星任务特别有用。即使有飞行历史,升华冷却中的热量和质量传递过程的某些方面仍未完全了解。历史和当前的建模工作都做出了需要进一步探索的假设。本文提出了立方体卫星升华冷却技术,回顾了过去和现在的升华器应用,并讨论了过去升华器用途和模型的知识空白和缺点。介绍了加州大学戴维斯分校升华器模型,并进行了初步分析,解决了文献中经常发现的假设。此外,还描述了带有升华器的立方体卫星的整体热控制系统,以及初始升华器尺寸确定程序和示例。
多年来,美国农业部森林服务局一直在改进机载热红外成像功能,以用于野火探测和测绘。新的 Phoenix 系统首次推出了高效率、数字化、地理校正产品,可用于战术火灾情报和测绘。与政府和私营部门的开发商和供应商合作,开发了一个完整的系统,以满足野火扑灭社区的独特需求。从 2003 年火灾季节开始,美国部署了两个 Phoenix 系统,用于野火探测和测绘任务。其中包括对图像本身、先进的 GPS/惯性测量单元和由此产生的地理校正产品的解释、有关使用 Phoenix 和将 Phoenix 产品集成到事件指挥结构中的操作方向,以及拟议的未来增强功能。
摘要:表面裂纹是高速导轨(HSR)平板轨道中的典型缺陷,可以导致结构性恶化并降低轨道系统的服务可靠性。但是,如何有效检测和量化表面裂纹的问题目前尚未解决。在本文中,采用了一种基于红外热成像的新型裂纹检测方法来量化轨道板板上的表面裂纹。在这种方法中,首次使用非缩放的Contourlet变换(NSCT)基于图像 - 增强算法处理的红外摄像头的轨道平板的热合器,并且裂缝是通过边缘检测算法的。接下来,为了定量检测表面裂纹,提出了一种像素安排方法,从而可以获得裂纹宽度,长度和面积。最后,在实验室测试中验证了所提出方法在不同温度下的检测准确性,在该测试中,倒入平板的比例模型,并使用温度控制的柜子来控制温度变化过程。结果表明,所提出的方法可以有效地增强图像中表面裂纹的边缘细节,并且可以有效地提取裂纹区域。裂纹宽度的量化的准确性可以达到99%,而裂纹长度和面积的量化的准确性为85%,这基本上满足了HSR-SLAB-TRACK-TRACK-TRACK检查的要求。这项研究可以打开基于IRT的轨道板检查在HSR操作中的可能性,以提高缺陷检测的效率。
大型复合材料结构(例如飞机机翼和风力涡轮机叶片)在运行过程中会承受循环载荷。使用过程中的损坏通常会由于材料摩擦而产生过多的热量,这可以通过热成像检测出来。本研究开发了一种基于热成像数据分析定量分析此类结构损伤的方法。当全尺寸复合材料风力涡轮机叶片在实验室中受到循环载荷时,使用被动热成像对其进行检查。从热成像图像中识别损伤区域,并使用图像处理自动跟踪损伤区域。随后在整体和细节层面上表征损伤区域。分析了损伤状态随疲劳循环次数的变化,并提供了有关损伤面积增长和损伤严重程度的信息。根据损伤区域的温度和焓变研究损伤的起始和进展。本研究为在循环载荷下对大型复合材料结构进行有效的结构健康监测和损伤预测提供了一种可行的解决方案。
摘要猪养殖是一个重要的行业,需要采取积极的措施来进行早期疾病检测和压碎症状监测,以确保最佳的猪健康和安全。这篇评论探讨了用于猪场的猪病和小猪症状症状监测的高级热传感技术和基于计算机视觉的热成像技术。红外热仪(IRT)是一种无创和有效的技术,用于测量猪体的渗透,提供了诸如非破坏性,长距离和高敏感性测量等优势。与传统方法不同,IRT提供了一种快速而节省劳动的方法来获取受环境温度影响的生理数据,对于了解猪体生理和代谢至关重要。IRT帮助早期疾病检测,呼吸健康监测和评估疫苗接种效果。 挑战包括影响测量精度的身体表面发射率变化。 热成像和深度学习算法用于猪行为识别,背面有效地检测背侧平面。 通过热成像,深度学习和可穿戴设备进行远程健康监测促进了对猪健康的非侵入性评估,从而最大程度地减少了用药的使用。 高级传感器,热成像和深度学习的倾斜度显示出疾病检测和猪养殖的改善的潜力,但是必须解决成功实施的挑战和道德考虑。 它还讨论了IRT技术的好处和局限性,并提供了当前研究领域的概述。 本研究IRT帮助早期疾病检测,呼吸健康监测和评估疫苗接种效果。挑战包括影响测量精度的身体表面发射率变化。热成像和深度学习算法用于猪行为识别,背面有效地检测背侧平面。通过热成像,深度学习和可穿戴设备进行远程健康监测促进了对猪健康的非侵入性评估,从而最大程度地减少了用药的使用。倾斜度显示出疾病检测和猪养殖的改善的潜力,但是必须解决成功实施的挑战和道德考虑。它还讨论了IRT技术的好处和局限性,并提供了当前研究领域的概述。本研究本评论总结了猪养殖行业中使用的最先进的技术病因,包括计算机视觉算法,例如对象检测,图像细分和深度学习技术。
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
摘要:航空工业中铝接头紧固件的检查是一项耗时且成本高昂但却是强制性的任务。直到今天,肉眼手动检查程序仍无法对损坏行为进行时间跟踪或对不同检查进行客观比较。数字检查方法解决了这两个方面的问题,同时大大缩短了检查时间。这项工作的目的是开发一种基于平面热波热成像和板状结构热不规则干扰分析的数字化自动化检查方法。为此,进行了超声锁相热成像和扫描激光多普勒振动测量的比较研究,并在一个可维修的飞机机身面板上对所有三种方法进行了基准测试。所提供的数据证实了使用所讨论的方法检测和鉴定铝制飞机机身面板中的沉头铆钉和螺钉的可行性。结果建议采用一种完全自动化的检查程序,该程序结合了不同的方法,并进行了一项研究,研究了更多的样本,以建立指示完好和损坏的紧固件的阈值。
摘要 美国宇航局地球科学技术办公室 InVEST(地球科学技术空间验证)计划资助的 HyTI(高光谱热像仪)任务将演示如何从 6U 立方体卫星平台获取高光谱和空间长波红外图像数据。该任务将使用空间调制干涉成像技术生成光谱辐射校准的图像立方体,该立方体有 25 个通道(8-10.7 m 之间,分辨率为 13 cm -1),地面采样距离约为 60 m。HyTI 性能模型表明窄带 NE Ts 小于 0.3 K。HyTI 的小巧外形是通过使用无活动部件的法布里-珀罗干涉仪和 JPL 的低温冷却 HOT-BIRD FPA 技术实现的。发射时间不早于 2021 年秋季。HyTI 对地球科学家的价值将通过机载处理原始仪器数据来生成 L1 和 L2 产品来展示,重点是快速提供有关火山脱气、地表温度和精准农业指标的数据。