核弹头(俄罗斯) ADM 原子爆破弹药 AICMS 自动库存控制和管理系统(俄罗斯) ALCM 空射巡航导弹 Avangard 高超音速滑翔飞行器(俄罗斯) A-235 反弹道导弹系统(俄罗斯) B61 热核重力炸弹(美国) CBM 建立信任措施 CFE 条约 欧洲常规武装力量条约 CNS 不扩散研究中心 CTR 合作威胁减少(计划) CWC 化学武器公约 DCA 双用途飞机 DIAMONDS(美国) 国防核数据服务集成与管理 DLT 分布式账本技术 DOD 美国国防部 F-15 战术战斗机(美国) F-16 单引擎多用途战斗机(美国) F-18“大黄蜂”——超音速、可搭载舰载的多用途战斗机(美国) F-35 隐形多用途战斗机(美国) HGV 高超音速滑翔飞行器 HLG(北约) 高级小组 IAEA 国际原子能机构 ICBM 洲际弹道导弹 INF 条约 《中程核力量条约》(1987 年) IPNDV 国际核裁军核查伙伴关系 伊斯坎德尔“9K720”——机动式短程弹道导弹系统(俄罗斯) KB Khimavtomatika 航天器推进和火箭发动机设计局(俄罗斯) KH-101/102 空射巡航导弹(俄罗斯) Kinzhal 可携带核弹头的空射弹道导弹(俄罗斯) MOD 国防部 NCND 既不确认也不否认(拥有美国核武器) NDA 无损分析 新 START 新战略
I. i ntroduction电线扭曲或缺乏能量产生,发生在农村地区或灾难或自然灾害中,是通信线的最重大责任或不利之处。要解决这些问题,我们需要一个可再生能源,该能源每周7天每天24小时运行。这款太阳能电源非常独特。它将太阳能转换为电力,并有助于手机进行通信,这使其在自然灾难和停电期间至关重要。太阳能充电器的开发从基本层面从焊接和制作面板等等基本层面等。计划在明亮的阳光下使用6伏的伏特充电器,并使用调节器逐渐降至5伏。在报告中,注意到移动充电器的详细实验特征。太阳能是直接由太阳产生并在其他地方(通常是地球)收集的能量。太阳通过热核过程创造了其能量。该过程产生热和电磁辐射。只有一小部分产生的总辐射到达地球。确实到达地球的辐射是当今几乎每种类型的能量的间接来源。确实到达地球的辐射是当今几乎每种类型的能量的间接来源。例外是地热能,核裂变和融合。甚至化石燃料都归功于太阳。他们曾经是生命的生物和动物,他们的生命依赖太阳。可以间接提供更多。世界上大部分所需的能量可以直接通过太阳能提供。将检查这样做的实用性,以及收益和缺点。此外,将注意到当前使用太阳能。
尽管朝鲜战争的大规模战斗得以结束,世界和平仍不稳定。美国和苏联这两个超级大国持有不同的意识形态,导致冷战期间双方反复对抗。对手扩大了核武库,但全球热核战争的威胁迫使对手通过代理人进行争夺霸权的斗争。远东局势的恶化和中东的一系列危机使向麻烦地区部署海军的传统做法具有了新的重要性。国际演习导致了威胁世界和平的事件和要求,海军在关键地区代表国家。在不同场合,这些部队疏散难民、巡逻动乱水域、为受威胁国家提供支持,并作为侵略者和被压迫者之间的堡垒,展现了自由的物质象征。技术和科学进步也标志着这一时期,海军航空经历了巨大的变化。这些进步的有效利用增强了海军海空军的火力、多功能性和机动性。制导导弹开始取代舰炮,舰队提高了发射核武器的能力,飞机速度从亚音速跃升至超音速,核动力对飞机的适应性正在研究中,对太空的了解不断增加影响了海军作战。空对空导弹成为拦截器的标准装备,舰船也配备了防空导弹。规划人员打算让战斗机在远距离和高空拦截苏联轰炸机,并错误地从麦克唐纳飞机公司 F4H-1 幻影 II 的初始设计中删除了机枪,海军未能纠正这一错误。空军在随后的越南战争中积累了丰富的经验
尽管朝鲜战争的大规模战斗得以结束,世界和平仍不稳定。美国和苏联这两个超级大国持有不同的意识形态,导致冷战期间双方反复对抗。对手扩大了核武库,但全球热核战争的威胁迫使对手通过代理人进行争夺霸权的斗争。远东局势的恶化和中东的一系列危机使向麻烦地区部署海军的传统做法具有了新的重要性。国际演习导致了威胁世界和平的事件和要求,海军在关键地区代表国家。在不同场合,这些部队疏散难民、巡逻动乱水域、为受威胁国家提供支持,并作为侵略者和被压迫者之间的堡垒,展现了自由的物质象征。技术和科学进步也标志着这一时期,海军航空经历了巨大的变化。这些进步的有效利用增强了海军海空军的火力、多功能性和机动性。制导导弹开始取代舰炮,舰队提高了发射核武器的能力,飞机速度从亚音速跃升至超音速,核动力对飞机的适应性正在研究中,对太空的了解不断增加影响了海军作战。空对空导弹成为拦截器的标准装备,舰船也配备了防空导弹。规划人员打算让战斗机在远距离和高空拦截苏联轰炸机,并错误地从麦克唐纳飞机公司 F4H-1 幻影 II 的初始设计中删除了机枪,海军未能纠正这一错误。空军在随后的越南战争中积累了丰富的经验
* 通讯作者。电话 + 7 921 786 18 03;电子邮件:agkolosko@mail.ru 摘要 开发了一种用于记录和模拟复杂场发射实验的方法。该方法包括处理三种类型的数据流:场阴极电特性数据(电压和电流脉冲)、场发射投影仪数据(辉光图案)和飞行时间质谱仪数据(测量室中挥发性产物的质谱)。LabView 软件环境实现了一种同步再现多通道实验数据的算法,并可以实时处理这些数据。该程序有一套内置的软件工具,可以实现功能并多次重复实验,在指定的时间点暂停,以及在模拟中更改时间流速。通过研究基于碳纳米管的纳米复合场阴极的场发射的例子证明了该方法的能力。关键词 碳纳米管;场发射;多通道数据收集;在线处理;实验模拟。 © AG Kolosko, VS Chernova, SV Filippov, EO Popov, 2020 简介 获取、存储和处理实验数据的方法是实验物理学不可或缺的一部分。这些方法随着计算机和测量设备的发展而不断发展。如今,高速记录和数据记录手段可以接收大量信息。因此,例如,使用放射性粒子传感器的高速记录来研究热核反应堆(ITER)等离子体中发生的过程 [1]。另一方面,现代计算系统允许在线数据处理,将记录的信息量减少了几个数量级。在线处理还允许控制实验系统随时间和实验条件变化时的行为,例如,记录场发射器(电流脉冲)响应的幅度,电压脉冲幅度急剧增加 [2]。本文描述的场发射实验是一类特殊的实验,其实施需要创建真空
这是“天体物理学讲义和论文”系列的第三卷。该系列从 2004 年开始每半年出版一次,旨在为专业界提供西班牙天体物理学研究进展的领先集合,这些集合以西班牙皇家物理学会 (RSEF) 每两年一次的会议上天体物理学研讨会上发表的精选演讲为基础。特别是,本卷包含了受邀评论(讲义)和第三届天体物理学研讨会的选集(论文),该研讨会于 2007 年 9 月在格拉纳达大学科学学院举行的第 31 届 RSEF 科学会议期间举行。本书突出介绍了西班牙天体物理学家对行星学、太阳和恒星物理学、河外天文学、宇宙学和天文仪器的一些重要贡献。在几十年没有专门的任务之后,金星再次受到关注。一方面,Ricardo Hueso 及其同事和 Miguel ´ Angel L´opez-Valverde 回顾了 ESA 金星快车对了解邻近行星大气层的贡献。Carme Jordi 在一篇综合论文中描述了用于确定恒星质量、半径、温度、化学成分和光度的主要观测校准技术和方法。垂死恒星对于理解暗能量的性质至关重要,这可能是当今物理学中最基本的问题。Ia 型超新星在十年前显示宇宙膨胀速度加速方面发挥了根本性作用。Inma Dom´ınguez 及其同事详细介绍了热核超新星爆炸的基本物理知识如何影响它们作为天体物理蜡烛的作用。Isabel M´arquez 和 Eduardo Battaner 分别回顾了星系环境对星系活动的影响以及星系中磁场的特性。加那利大望远镜 (GTC) 的首次亮相是 Francisco S´anchez 的评论主题,他是这项如今已成为现实的事业的倡导者。机器人天文学不是未来,而是全球多台望远镜实现的现实,其中一些在西班牙。Alberto Castro-Tirado 介绍了其中一些仪器及其在探测和跟踪 GRB 中的作用。还有更多。代表 RSEF 天体物理学小组,与前几卷一样,编辑们希望这本书能激发人们对天文学的兴趣,尤其是 2009 年是国际天文学年。编辑们感谢西班牙科学和创新部通过拨款 AYA-2007-28639-E 和 FEDER 基金提供的资金支持。本书是在西班牙皇家物理学会 (RSEF) 的赞助下编辑的。
这是“天体物理学讲义和论文”系列的第三卷,该系列始于 2004 年,每两年出版一次,旨在为专业界提供西班牙天体物理学研究进展的领先集合,这些集合以西班牙皇家物理学会 (RSEF) 每两年一次的会议的天体物理学研讨会期间所作的精选演讲为基础。特别是,本卷包含特邀评论(讲义)和第三届天体物理学研讨会的部分投稿(论文),该研讨会于 2007 年 9 月在格拉纳达大学科学学院举行的第三十一届 RSEF 科学会议期间举行。本书重点介绍了西班牙天体物理学家对行星学、太阳和恒星物理学、河外天文学、宇宙学和天文仪器的一些重要贡献。数十年来,金星一直没有进行过专门的探测任务,如今,它再次受到人们的关注。一方面,Ricardo Hueso 及其合作者,另一方面,Miguel ´ Angel L´opez-Valverde,回顾了欧洲航天局金星快车对了解邻近行星大气层的贡献。Carme Jordi 在一篇综合论文中描述了用于确定恒星质量、半径、温度、化学成分和光度的主要观测校准技术和方法。垂死恒星对于了解暗能量的性质至关重要,这可能是当今物理学中最基本的问题。Ia 型超新星在十年前发挥了重要作用,表明宇宙膨胀速度加快。Inma Dom´ınguez 及其合作者详细介绍了热核超新星爆炸的基本物理知识如何影响它们作为天体物理蜡烛的作用。Isabel M´arquez 和 Eduardo Battaner 分别回顾了星系环境对星系活动的影响以及星系磁场的特性。Francisco S´anchez 回顾了 Gran Telescopio Canarias (GTC) 的首次亮相,他是这项努力的鼓励者,如今它已成为现实。机器人天文学不是未来,而是全球多台望远镜实现的现实,其中一些在西班牙。Alberto Castro-Tirado 描述了其中一些仪器及其在探测和跟踪 GRB 中的作用。还有更多。代表 RSEF 天体物理学小组,与前几卷一样,编辑们希望这本书能够激发人们对天文学的兴趣,尤其是 2009 年是国际天文学年。编辑们感谢西班牙科学和创新部通过 AYA-2007-28639-E 拨款和 FEDER 基金提供的资金支持。本书是在西班牙皇家物理学会 (RSEF) 的赞助下编辑的。
核聚变是一种众所周知的能源,它有可能为人类的未来提供可持续、环保、可调度的高功率密度能源供应解决方案。目前,利用核聚变能最有前途的方法是基于专门设计的环形装置内的磁约束高温等离子体 [1]。对热核磁约束聚变的持续研究推动了当前示范聚变反应堆 (DEMO) 的设计活动,该反应堆预计将作为所谓的托卡马克型反应堆实现 [2]。实现 DEMO 反应堆的一个主要挑战是设计和制造高负荷等离子体面对部件 (PFC),这些部件必须在聚变运行期间承受强烈的粒子、热量和中子通量 [3]。对于此类 PFC,需要特定的高性能材料才能设计出可靠的部件。对于直接面对聚变等离子体的材料,钨 (W) 目前被认为是未来磁约束热核聚变反应堆的首选等离子体面对材料 (PFM)。这主要是因为 W 表现出较高的溅射阈值能量,以及作为聚变反应燃料的氢同位素的低保留率 [4]。对于 DEMO 反应堆中的 PFC,一个特别关键的方面是瞬态壁面负载,例如,由于托卡马克中的等离子体不稳定性而产生的瞬态壁面负载。此类瞬态事件可能导致 PFC 上出现非常强烈的热负载(数十 GW/m 2,持续时间为几毫秒),进而严重损坏反应堆的包层结构 [5]。为了保护聚变反应堆的壁免受此类事件的影响,目前正在研究特定的限制器 PFC。这些组件预计将阻挡到达反应堆壁的短暂而强烈的热脉冲,以使这些限制器组件后面的包层结构不会热过载或损坏。这种限制性 PFC 的一种可能的材料解决方案是使用定制的多孔 W 材料。利用这种超材料,可以实现将由于结合了多孔性而具有的总体低热导率与 W 的有益等离子体壁相互作用特性相结合的组件。然而,W 是一种难以加工的材料,因为它本质上是一种硬而脆的金属,这意味着加工 W 既费力又昂贵。针对这些限制,增材制造 (AM) 方法代表了一种实现几何复杂的 W 部件的通用方法。AM 工艺的特点是,在计算机控制下通过逐层沉积材料来创建三维物体,这意味着使用这种方法可以直接实现具有高几何复杂性的部件。近年来,利用激光粉末床熔合 (LPBF) 技术对金属进行 AM 加工已取得重大进展,该技术无需粘合剂相即可对多种金属进行直接 AM 加工。在 LPBF 加工过程中,原料粉末材料通过聚焦在粉末床上的激光束选择性地熔化和固结 [6]。封面图片展示了通过 LPBF 制造的具有定制晶格结构的 W 样品的顶视图。目前正在针对如上所述的限制器 PFC 研究此类多孔 W 晶格。图示样品是一种晶格结构,它源自基于十四面体重复(开尔文模型)的参数固体模型。这种模型过去也应用于开孔铝泡沫 [7] 并得到验证。图示 W 晶格的参数
尽管它占据了宇宙空间的 99% 以上,但在地球上也只能看到极光等罕见现象。这种现象发生在两极,是由于来自太阳风的电子受到地球磁力加速并与大气中的原子碰撞而产生的。在这种相互作用中,包括原子的电离和激发在内的一系列事件形成了不同能量状态的物质“沙拉”。这种物质“沙拉”不符合热力学平衡,具有与周围环境重新结合的能量。1928 年,人们提出了这种物质的第四种状态,并称之为等离子体[ 1 ]。然而,直到第二次世界大战之后,研究人员才开始对人造等离子体的形成及其对人类的潜在益处产生兴趣。起初,人们竞相开发用于热核聚变的等离子体,即在极低的压力下产生等离子体,然后利用强磁场进行受控核聚变[ 2 ]。随后,在 20 世纪 70 年代,等离子体技术开始了更加深入的研究,不仅在电子工业,而且在航空航天、汽车、冶金、钢铁、生物医学、纺织、光学和造纸工业也得到了广泛的应用[3-10]。这些技术大部分使用低压冷等离子体,即电子能量远大于等离子体中其他粒子平均能量的等离子体,而炼钢等应用则使用热等离子体,其中系统接近平衡,即电子能量与其他物质的能量大致相同。由于产生等离子体所需的压力较低,这些冷等离子体技术在使用上受到限制。除了尺寸限制之外,还有其他因素,例如需要处理的产品具有低蒸汽压,从而在加工过程中保持其完整性。一种可在大气压下使用并保持等离子体低温的技术,即允许电子与其他物质发生高能碰撞的非平衡特性,使环境保持低温。这种技术在聚合物、液体和活组织等热敏感材料的应用方面具有很大的吸引力[11,12]。过去 20 年的研究正在不断发展,被称为冷大气等离子体(或冷大气压等离子体 PFA)。它们主要应用于健康领域,如伤口愈合、血液凝固、龋齿消毒和改变哺乳动物细胞功能,并有可能用于新的癌症治疗[13-17]。在农业中,它可用于刺激植物生长和减少病原体、种子发芽、水果生物活性表面的净化以及收获后的净化[18-23]。在环境领域,它可用于环境、液体和固体的净化、水处理、染料降解等[24, 25]。在巴西,该技术仍很少得到应用和普及。一些使用它的研究中心以孤立和不系统的方式进行研究。 2020 年 2 月 8 日在 CNPq 研究目录中进行的搜索表明,巴西有 10 个研究小组的名称中带有“等离子体”一词,其中只有 02 个研究小组的名称中包含“大气等离子体”或“冷等离子体”一词。俄罗斯半干旱地区联邦乡村大学(UFERSA)自 2012 年以来一直致力于开展大气冷等离子体在农业、健康和环境领域的应用研究,并取得了有趣且前所未有的成果。考虑到该研究的低成本和相关性,以及其多学科、创新和跨部门集成的性质,该技术的传播可能是其在其他研究机构和国家工业中传播的重要一步。凭借我们过去 8 年积累的经验,我们将能够接近农业、卫生和