NASA MARSHALL太空飞行中心(MSFC)自2010年以来在液体火箭发动机组件设计,开发和测试中应用了各种形式的金属添加剂制造(AM)。这些AM技术降低了硬件成本,缩短制造时间表,通过减少关节数量来提高可靠性,并通过允许非常规设计来改善硬件性能。RAMFIRE项目,由太空技术任务局(STMD)游戏更改开发(GCD)计划资助,已与Elementum 3D合作进一步使用了新颖的AM Liquid Rocket喷嘴。该项目高级新型大型AM铝材料技术,可在火箭发动机和发射车中节省大量重量。以前,铝合金难以使用增材制造焊接和打印。Ementimum 3D的专利铝6061-RAM2合金允许使用各种AM技术和各种尺度打印铝合金。可以利用合金用于焊接线,显示出铝焊缝的急剧改善。The RAMFIRE project focuses on five key areas: 1) Laser Powder Directed Energy Deposition (LP-DED) AL6061-RAM2 feedstock specification and verification, 2) LP-DED process development and validation, 3) LP-DED printed AL6061-RAM2 microstructural and mechanical property characterization, 4) Hot-fire test a 5.4k-lbf thrust class regeneratively cooled nozzle, 5) Print large scale再生冷却喷嘴。热火测试通过提供相关环境将TRL级别提高到5/6范围,从而向NASA和潜在用户展示了高级空间技术的潜力。
爱尔兰生物能源的发展与对欧盟政策的承诺紧密相互交织在一起,例如可再生能源指令(RED)和Repowereu。该国的国家生物能源计划从2014年到2020年,其重点是增强生物能源对爱尔兰热火和运输部门的贡献。该计划包括针对稳定的生物质供应的举措,可再生能源的需求副措施以及对研发的支持。但是,就实现欧盟的目标而言,爱尔兰的进步已混杂。根据2009年可再生能源指令,爱尔兰的目的是到2020年从可再生资源中产生16%的能源,该目标后来更新到2030年。从2005年到2014年,爱尔兰的可再生能源份额从3.1%增至其最终消费的8.6%。然而,到2020年,它仅达到13.5%,低于16%的进球。在更广泛的欧盟背景下,生物能源主要源自农业,林业和有机废物,约占2021年可再生能源消耗的59%。爱尔兰,与整个欧盟的努力保持一致,特别是促进沼气和生物甲烷,这对于减少对进口化石燃料的依赖至关重要。尽管做出了这些努力,但爱尔兰仍然面临着充分实现其可再生能源潜力并实现其欧盟规定目标的挑战。爱尔兰缺乏与其他欧盟成员国相比,支持土著生物甲烷产业发展的政策和立法。由于化石燃料价格最近上涨,因此在生产成本和市场回报成本之间已经缩小了巨大的差距。必须通过政策,激励措施和财政支持来弥合此差距。
近年来,随着常规的石油和天然气资源的耗竭(通常由砂岩,页岩,碳酸盐,碳酸盐,火山岩,火山岩,煤炭,气体水合等代表),非常规的石油和天然气勘探和开发已成为新的热火,成为了新的热率(Yin等,2019a; Yin等,2019b; Yin。 Al。,2022a,2022b;非常规石油和天然气储层的孔隙率较低,渗透率较低,异质性和复杂成岩作用。因此,在不同尺度上的孔和断裂的定量表征已成为高耐高率储层发现的重点和挑战。不同尺寸的毛孔和骨折不仅会影响非常规石油和天然气储层的存储和迁移能力,而且还会对安全钻探和石油和天然气开发计划产生重要影响(Li等,2019; Yin等,2020a; 2020a; Yin et al。,2020b; 2020b; li等,2020; yin and wu,2020; lie,2020; lie and 2020; lie and lie,2020年;本研究主题中的23项研究旨在将不同规模的毛孔和裂缝的定量表征和工程应用汇总到非常规储层中的毛孔和断裂,旨在理解紧密储藏孔和骨折系统的多种方法定量表征的一般目标,并为未来的研究工作提供了一般框架。孔结构的细胞和定量表征的发展是实现紧密储层的有效发展的有效度量(Liu等,2020; Xu and Gao,2020; Xu等,2020)。该主题涵盖了
增材制造 (AM) 提供了新的设计和制造机会,可以降低成本和缩短工期、整合零件并优化性能。正在评估的一项技术是激光粉末定向能量沉积 (LP-DED),与激光粉末床熔合 (L-PBF) 相比,该技术可显著提高规模。NASA 和行业合作伙伴一直在开发 LP-DED 工艺,以展示用于液体火箭发动机通道冷却喷嘴的内部通道几何形状和开发组件。优化液体火箭发动机在极端高压和氢环境中的材料仍然是一项关键挑战。NASA 已经开发出一种名为 NASA HR-1(耐氢 -1)的辅助材料作为使用 AM 技术的解决方案。NASA HR-1 是一种高强度 Fe-Ni 高温合金,旨在抵抗高压、氢环境脆化、氧化和腐蚀。NASA HR-1 满足液体火箭发动机部件的材料要求,包括良好的耐氢性、高导电性、良好的低周疲劳性能以及高热通量环境中部件的高伸长率和强度。除了供应链的进步之外,高密度薄壁材料的材料特性和工艺特性已经完成。NASA 还在 LP-DED NASA HR-1 中完成了几个缩比和全尺寸通道壁喷嘴的制造,并完成了热火测试。这包括改进工艺以生产薄壁和各种通道几何形状,以满足通道壁喷嘴应用的要求。本文将概述 LP-DED 工艺开发、材料特性和特性、组件制造和热火测试。使用液氧 (LOX)/甲烷对着陆器级 7K-lbf 推力室完成了热火测试。除了硬件开发之外,还将介绍热火测试的设计概述和结果,以供未来在 2K-lbf 和 35k-lbf 推力室和大型制造技术演示器上进行测试。
再生冷却或倾倒冷却喷嘴是热气体膨胀的关键部件,可实现液体火箭发动机系统的高温和性能。再生冷却通道壁喷嘴是整个推进行业使用的一种设计解决方案,是一种制造带有内部冷却液通道的喷嘴结构的简化方法。通道壁喷嘴 (CWN) 设计的规模和复杂性可能给制造带来挑战,从而延长交货时间并提高成本。其中一些挑战包括:1) 独特且耐高温的材料,2) 在制造和组装过程中对大型零件的严格公差以容纳高压推进剂,3) 薄壁特征以保持足够的壁温,以及 4) 独特的制造工艺操作和复杂的工具。美国国家航空航天局 (NASA) 和美国专业制造供应商正在完善现代制造技术,以降低复杂性并降低与通道壁喷嘴制造技术相关的成本。增材制造 (AM) 是正在评估的通道壁喷嘴关键技术进步之一。推进部件的增材制造大部分集中在激光粉末床熔合 (L-PBF) 上,但目前还无法将其规模化应用于大型喷嘴。NASA 正在开发用于喷嘴的定向能量沉积 (DED) 技术,包括基于电弧的沉积、吹粉沉积和激光丝直接封堵 (LWDC)。目前考虑采用不同的方法来制造喷嘴,并且每种 DED 工艺都提供独特的工艺步骤以实现快速制造。基于电弧和吹粉沉积的技术用于形成 CWN 衬套。正在展示各种材料,包括 Inconel 625、Haynes 230、JBK-75 和 NASA HR-1。吹粉 DED 工艺也正在展示如何在类似材料中通过一次操作形成整体通道喷嘴。LWDC 工艺是一种使用局部激光丝沉积技术封堵衬套内通道并形成结构夹套的方法。除了双金属收尾材料(C-18150 - SS347 和 C-18150 - Inconel 625)外,该工艺还使用了上述相同的材料。NASA 已完成对各种通道壁喷嘴制造技术的工艺开发、材料特性和热火测试。本出版物概述了正在评估的各种通道壁喷嘴制造工艺和材料,包括热火测试的结果。还讨论了与通道壁喷嘴制造相关的未来发展和技术重点领域。