表面安装的永久磁铁同步电动机(SPMSM)是一台电动机,由于良好的特性,例如高功率密度,较低的质量,高效率和较低的惯性扭矩,因此广泛应用于电动汽车(EV)和电动驱动器。对于SPMSM,有两种类型的SPMSM,即内部转子SPMSM和外转子SPMSM。为了分析,计算和比较这两种运动类型的优势和缺点,本研究提出了一个分析模型,以计算和设计具有内部和外转子配置的SPMSM的电磁参数和热特性。随后,开发了有限元方法来验证从分析模型获得的输出参数。仿真结果还表示两种类型的电动机的性能。但是,内转子SPMSM在高速和低温方面具有优势,而外转子SPMSM具有更高的扭矩和稳定性,但在较高的温度下运行。
奥本大学正在将实验和建模研究结合起来,研究从煤炭塑料废物的气化中生产氢的生物量混合物,以产生能量和燃料,同时减少温室气体的排放。主要目的是检查实验室规模的流化机气化器中所选原料混合物的气化性能。特定目标是研究蒸汽和氧气环境中的煤层生物量混合物;表征来自混合物原料的灰分/炉渣的热特性,并研究炉渣/灰与难治材料之间的相互作用;并开发工艺模型,以确定合成剂清理所需的技术,并去除氢生产的污染物。将测量煤炭塑料 - 生物量混合物的流量特性。合成气组成将分析永久性气体,例如一氧化碳,二氧化碳,甲烷和氢以及污染物,例如焦油,硫化氢,羰基硫化物和氨。
因此,为实现建筑微电网的高效、经济运行,提出了一种考虑虚拟储能的建筑微电网规划与运行多目标优化新方法。首先,基于建筑自身的储热特性,建立建筑微电网虚拟储能模型。其次,以投资成本和综合运行效益为目标,以冷、热、电平衡为约束,构建考虑虚拟储能的建筑微电网多目标优化模型。最后,在原有灰狼群算法的基础上,引入小生境处理机制和灰色加权关联法,对建筑微电网配置与运行进行优化。对于典型的夏季和冬季建筑微电网,仿真结果表明,所提出的方法通过虚拟能量充放电管理提高了建筑微电网系统规划及其运行的整体经济性以及用户体验。
范德华 (vdW) 材料因其众多独特的电子、机械和热特性而备受关注。特别是,它们是单色台式 X 射线源的有希望的候选材料。这项研究表明,台式 vdW X 射线源的多功能性超出了迄今为止所展示的范围。通过在 vdW 结构和入射电子束之间引入倾斜角,理论和实验表明,可访问的光子能量范围增加了一倍以上。这使得 vdW X 射线源的实时调谐具有更大的多功能性。此外,这项研究表明,通过同时控制电子能量和 vdW 结构倾斜,可访问的光子能量范围可以最大化。这些结果将为高度可调的紧凑型 X 射线源铺平道路,其潜在应用包括高光谱 X 射线荧光和 X 射线量子光学。
技术并对替代电子封装技术进行了比较。第 2 章介绍了电源混合动力车中使用的各种组件:它们的工作原理和选择指南。第 3 章专门介绍了电源混合动力车构造中使用的材料,并提供了选择和使用它们的实用建议。第 4 章详细介绍了设计问题:工艺流程、系统分区、封装选择和设计指南,并提供了分步说明以确保电源混合微电路的性能、可靠性和可制造性。第 5 章中讨论的信息对于理解电源混合动力车构造中使用的材料的热特性、材料的选择指南以及工艺控制和混合动力车性能评估方法是必不可少的。第 6 章介绍了当前生产中使用的制造工艺和方法。它们包括基板制造、组装和测试。最后一章包含有关电源混合动力车和模块的高级应用的信息。
摘要。由于复合材料在强度、刚度和密度方面可以进行定制,因此在航空航天领域是一种宝贵的商品。但是,复合材料也会随着时间的推移而变质,就像其他材料一样,特别是在太空等恶劣条件下。飞机环境中温度突然变化引起的热降解会导致复合材料的尺寸变化、开裂甚至分解,这些降解问题可能会影响复合材料在航空航天中的应用。在本研究中,对碳/酚醛复合材料进行了热重分析 (TGA),作为纤维使用平纹碳纤维 (Kyoto - 碳),作为基质使用 ARMC-551-RN 酚醛树脂。此外,测试方法参考 ASTM E1131-08 标准。热重成分分析测试方法。最终,工程师希望通过使用 TGA 分析来了解用于航天器部件的碳/酚醛复合材料的热特性和稳定性,从而改善航天器的设计、可靠性和严酷太空任务的安全性。
摘要:Niobate锂是一种无铅材料,由于其出色的光学,压电和铁电特性,它引起了极大的关注。这项研究通过SI底物上的多晶Linbo 3膜的创新溶胶 - 凝胶/自旋涂层方法致力于合成。合成了一个新型的单源杂质杂物前体,其中包含锂和niobium,并应用于溶胶 - 凝胶合成。已经通过减弱的总反射,X射线光电光谱,热重分析和差异扫描量热法测试了前体的结构,组成和热特性。linbo 3膜从结构的角度来表征,X射线衍射和拉曼光谱法结合。现场发射扫描电子显微镜,能量色散X射线分析和X射线光电子光谱已用于研究沉积膜的形态和组成特性。
1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.8 稳态寿命 1006 间歇性寿命 1007 一致寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.7 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.10 密封 1015.9 老化测试 1016 寿命/可靠性特性测试 1017.2 中子辐照 1018.2 内部水蒸气含量 1019.4 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.2数字微电路的剂量率翻转测试 1022 Mosfet 阈值电压 1023.2线性微电路的剂量率响应 1030.1预封装老化 1031 薄膜腐蚀测试 1032.1封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性寿命测试 1034 芯片渗透测试(针对塑料设备)
摘要:聚合物因其易于加工、重量轻、绝缘性优异以及机械性能好而被广泛应用于电子封装领域。对散热管理材料的需求日益增长。然而,大规模连续生产薄型高导热聚合物复合材料仍然具有挑战性,尤其是需要控制填料的填充量。在本文中,我们揭示了一种轻松有效的提高导热率的方法,即使用混合填料稻壳(RH)和氮化铝(AlN)与环氧树脂,通过手工铺层技术制成,重量从 30% 到 40% 不等,比例不同(1:1、1:3 和 3:1 wt.%)在当前的研究中被考虑。使用李氏圆盘法测定热导率等热特性。使用热机械分析仪(TMA)通过在氮气下随温度变化来确定热膨胀系数(CTE)和玻璃化转变温度(Tg)。在扫描电子显微镜(SEM)下研究了混杂复合材料的分子结构和外围形貌分析以及与环氧树脂的相互作用。
尽管它们的复杂性,但相互作用的系统仍负责各种有趣的现象,例如分数量子霍尔的效应[13,31,35],任何人的准颗粒的出现[12,23],多体定位[22]和量子多体scars [37]。这些现象中的许多现象都可以用少数新兴程度的自由元来描述。最简单的情况是相互作用的存在将系统转换为免费或几乎免费的系统的情况[24]。识别自由度的自由度可以用很少的参数来实现系统的效率描述,而这些参数仅在其大小上多个多种多样地生长。此外,相互作用系统中自由的出现决定了它们的热特性,淬灭的弹道/不同传播以及其准粒子激发的性质[24]。出乎意料的是,即使它们似乎具有强烈的相互作用,它们在热力学极限[15]中的表现几乎是自由的[15],例如横向和纵向线[36]或XYZ模型[17]。