热电子晶体管 (HET) 代表了一种令人兴奋的新型半导体技术集成器件,它有望实现超越 SiGe 双极异质晶体管限制的高频电子器件。随着对石墨烯等 2D 材料和新器件架构的探索,热电子晶体管有可能彻底改变现代电子领域的格局。这项研究重点介绍了一种新型热电子晶体管结构,其输出电流密度创下了 800 A cm − 2 的记录,电流增益高达 𝜶,采用可扩展的制造方法制造。该热电子晶体管结构包括湿转移到锗衬底的 2D 六方氮化硼和石墨烯层。这些材料的组合可实现卓越的性能,尤其是在高饱和输出电流密度方面。用于生产热电子晶体管的可扩展制造方案为大规模制造开辟了机会。热电子晶体管技术的这一突破为先进的电子应用带来了希望,可在实用且可制造的设备中提供大电流能力。
钻石的太空格是以面部为中心的立方体。钻石结构的原始基础在坐标(000)和(1/4 1/4 1/4)上具有两个与FCC晶格的点相关的原子。如果将细胞作为常规立方体,基础由八个原子组成。(a)找到此基础的结构因子。(b)找到S的零,并表明钻石结构的允许反射满足V 1 + V 2 + V 3 = 4 N,其中所有索引均匀,n是任何整数,否则所有索引都是奇数。(请注意,H,K,L可能是为V 1,V 2,V 3编写的。)
该原型机用于实验验证 SmartCHP 概念。实验工作的主要发现是,原型机的操作窗口比预期的要小。在当前系统中,由于燃料供应能力和燃烧所需的最低氧含量的限制,锅炉的容量只能在相对较小的范围内变化。重新设计燃料喷射方法以及向烟气锅炉中注入更多空气的选项可以增加这个操作窗口。不过,在项目期间考虑了一些替代的 CHP 解决方案,这些解决方案可以在复杂度较低的系统中以相似或更好的效率提供所需的灵活性。例如,发动机与热泵的组合可以(理论上)将系统的整体效率提高到 100% 以上,并且还有一个好处是,在高热量需求时(冬季),系统不会给电网带来负担。
土壤和地质,土地利用,噪音和陆地植被没有预期。根据联邦紧急事务管理机构(FEMA)洪水保险率图32029CIND0A和32029C0100D的洪水区或洪泛区不在洪水区或洪泛区,并且没有联邦指定或非界限湿地在项目区域内或附近(请参阅Appendix d,Appendix d,Aquatic Resources Deleation Report,USFWS 202222)。项目区域位于现有的工业区域,主要噪声来源与工业运营,新建筑物的建设和道路交通有关。在项目区域附近没有敏感的噪声受体,因为在5英里内没有住宅,并且在项目区域10英里以内的住宅中没有区域。预计与土壤和地质,地质植被,洪泛区,土地使用或噪音无关。因此,这些资源领域不包括在此EA的范围中。
系数 数值 e 𝑏 9 𝛼 𝑇 (C -2 ·m J/K) 1.64067 10 7 𝑇 𝐶 (K) 292.67 𝛽 (C -4 ·m 5 J) 3.148 10 12 𝛾 (C -6 ·m 9 J) −1.0776 10 16 𝛿 (C -8 ·m 13 J) 7.6318 10 18 𝑄 𝑖3 (C -2 ·m 4 ) 𝑄 13 = 1.70136 − 0.00363 𝑇 𝑄 23 = 1.13424 − 0.00242 𝑇 𝑄 33 = −5.622 + 0.0105 𝑇 𝑍 𝑖33(C -2 ·m 4 ) 𝑍 133 = −2059.65 + 0.8 T 𝑍 233 = −1211.26 + 0.45 T 𝑍 333 = 1381.37 −12 T 𝑠 𝑖𝑗(Pa -1 ) 𝑠 11 = 1.510 10 −11 𝑠 12 = 0.183 10 −11
主要是一种可观察的电子,丘陵中的室温热电器S为对哈伯德模型的定量评估提供了可能的可能性。使用行列式量子蒙特卡洛(Monte carlo),我们在多个库酸盐家族之间进行了哈伯德模型计算与实验测量的室温S之间的一致性,这既在质量上都在掺杂依赖性方面,并且在大小方面。我们观察到s的上流,温度降低,其斜率与在铜层中实验观察到的斜率相当。从我们的计算中,S变化符号的掺杂量紧邻化学电位在固定密度下的温度依赖性的消失。我们的结果强调了相互作用效应在对热电酸盐的系统评估中的重要性。
Kalinga Geothermal Power Project - Phase 1 Geothermal Aragorn Power and Energy Corporation Lubuagan, Pasil and Tinglayan, Kalinga CAR 40.000 2030 2030 Kalinga Geothermal Power Project - Phase 2 Geothermal Aragorn Power and Energy Corporation Lubuagan, Pasil and Tinglayan, Kalinga CAR 40.000 2032 2032 Kalinga Geothermal Power项目 - 第3阶段地热阿拉贡电力和能源公司Lubuagan,Pasil和Tinglayan,Kalinga Car 40.000 2035 2035 2035 Hydropower 6683.558 Piapi River Hydreelectric Power Project Hydro Repower Enseration Hydro Repower Energe Energy Develoct可再生能源公司Natonin,Mt。省汽车3.000 2025 2025上锡富水力发电项目水电项目水电绿色可再生能源公司natonin,山省汽车2.750 2025 2025 Matuno 1 Hydroctric Power项目Hydro Smith Bell Mini-Hydro Corp. Ambaguio,Nueva Vizcaya II 7.400 2025 2025 2025 PAMPANG HYDROECTRIC POWEN Hydroelectric Power Project Hydro Isabela Power Corporation San Mariano & San Guillermo, Isabela II 19.000 2025 2025 Bacolan Hydroelectric Power Project Hydro Northgreen Energy Corporation San Clemente, Tarlac & Mangatarem, Pangasinan I 3.000 2025 2025 Coto 2 Hydroelectric Power Project Hydro Coto Hydro Corp. MASINLOC,ZAMBALES III 3.500 2025 2025 CAMILING RIVER 3 HYDRECTRIC POURDE PROPECT HYDRO NORTHGREEN ENSERCTOR CORPORATION MAYANTOC,TARLAC III 4.200 2025 2025 BOGA HYDRECTRIC POWER PORPECT PORPECT HYDRO KADIPO KADIPO BAUKO BAUKO BAUKO BAUKO HYDOPOWER. BAUKO BAUKO,BAUKO,BAUKO,MMT.省汽车1.000 2025 2025上奇科水力发电项目Hydro Kadipo Bauko Hydropower Corp. Bauko,Mt。省汽车2.000 2025 2025较低的Chico水力发电项目Hydro Kadipo Bauko Hydropower Corp. Bauko,Mt。
添加剂制造(AM)工艺,例如激光粉末床融合,可以通过分层扩散和熔化粉末来制造物体,直到创建自由形式的零件形状。为了提高AM过程中涉及的材料的特性,重要的是要预测材料表征作为处理条件的函数。在热电材料中,功率因数是对材料如何将热量转化为电的有效性的量度。虽然较早的作品已经使用各种技术预测了不同热电材料的材料表征特性,但在AM过程中尚未探索机器学习模型的实现,以预测鞭毛尿酸酯(BI2TE3)的功率因数。这很重要,因为BI2TE3是低温应用的标准材料。作为概念证明,我们使用了有关涉及的制造处理参数的数据以及在BI2TE3 AM中收集的原位传感器监视数据,以训练不同的机器学习模型,以预测其热电功率因子。我们使用80%的培训和20%的测试数据实施了监督的机器学习技术,并进一步使用了置换功能重要性方法来识别重要的处理参数和原位传感器功能,这些特征最能预测材料的功率因数。基于合奏的方法,例如随机森林,Adaboost分类器和Bagging分类器,在预测功率因数方面表现最好,而袋装分类器模型则达到了90%的最高精度。此外,我们发现了前15个处理参数和原位传感器功能,以表征材料制造属性(例如功率因子)。这些功能可以进一步优化,以最大程度地提高热电材料的功率因数,并提高使用该材料制造的产品的质量。
摘要。由于其高稳定性和宽范围的带隙,已经大规模研究了半身的材料。在这里,我们研究了LICDX(X N,P,AS,SB和BI)的基本物理和热电学参数,并观察到这些化合物具有F43M空间组,其空间群为5.31、6.06、6.25、6.64和6.81Å的LICDN,LICDP,LICDAS,LICDAS,LICDAS,LICDSB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LITBIDB和LITBI,所有化合物都表现出直接的带隙半导体行为,除了licdbi显示金属性质。在近红外和可见区域中,这些化合物显示出极好的光伏行为,但它们限制了远红外和紫外线的辐射。通过检查热电特性,我们分析了在300 K时,ZT在这些材料中的三种材料的p和n区域都达到了统一性,使它们在环境温度下使它们具有前瞻性热电候选。所研究的热力学特性证实了材料稳定,这将激发实验者。