我们的 HIP 产品制造厂每周都会生产和加工数吨材料,如工具钢、高速钢、不锈钢、钴和镍基合金。这是通过用 HIP 将金属粉末致密化成实心棒或坯料来实现的。这可以是简单的固体或双金属材料,用于制造螺杆或衬套段,与传统工具钢部件相比,可提高性能。
Markus Mirz 1 m.mirz@iwm.rwth-aachen.de ; Marie Franke-Jurisch 2 marie.franke-jurisch@ifam- dd.fraunhofer.de ; Simone Herzog 1 s.herzog@iwm.rwth-aachen.de ; Anke Kaletsch 1 a.kaletsch@iwm.rwth-aachen.de ; Christoph Broeckmann 1 c.broeckmann@iwm.rwth-aachen.de 1 德国亚琛工业大学机械工程材料应用研究所 2 德国德累斯顿弗劳恩霍夫制造技术与先进材料研究所 摘要 粉末冶金法 (PM) 热等静压 (HIP) 中抽真空管的主要用途在于对胶囊进行抽真空和排气。传统的 HIP 胶囊由具有良好可焊性的金属板制成,因此易于连接抽吸管。随着增材制造 (AM) 等新兴技术的出现,现在可以设计更复杂的 HIP 胶囊。此外,还可以使用耐磨、富含碳化物的钢。然而,众所周知,这些材料难以焊接。本研究比较了两种不同的方法,将 AISI 304L 抽吸管粘合到由电子束熔化 (EBM) 以高碳工具钢 AISI A11 制成的 HIP 胶囊上。胶囊通过 TIG 焊接和钎焊连接,使用传统填充材料和基于热力学计算的定制填充材料。随后通过 HIP 进行固结,微观结构分析和氩气测量揭示了这三种方法对于气密接头的可行性和局限性。简介热等静压 (HIP) 是一种将金属粉末固结成固体材料的成熟工艺。它是在航空航天、汽车、石油和天然气等要求严格的行业中生产近净成形零件最可靠的成形工艺之一 [1]。使用一个或多个填充管将粉末填充到薄壁胶囊中。为了达到理想的高填充密度,填充过程通常在恒定振动下进行 [2]。之后,胶囊内的散装粉末通过真空泵通过抽气管排气,并在真空下保持数小时。在仍处于真空状态时,可通过锻造和焊接抽气管来封闭胶囊。在高温高压下,在 HIP 容器内对封装和脱气的粉末压块进行致密化 [3,4],这是最后一步,之后通过锯切、车削或铣削取出胶囊以获得成品部件。整个 HIP 工艺链如下图所示。
• 电子束焊接 • 包覆 • 无损检测 • 铸造和热等静压 • 自动化和 I4.0 • 制造设计 • 工厂和工艺开发 • ICME:综合计算材料工程 • 净零碳技术 • 高温材料(RA 钢)
奇瓦瓦州热处理专家安装配备通用快速冷却系统的 HIP 设备,投资未来 瑞典韦斯特罗斯,2020 年 1 月 16 日——HT-MX 总部位于墨西哥奇瓦瓦,专门为航空航天和汽车市场提供热处理和冶金实验室服务。当该公司决定扩大其已经广泛的服务范围并扩大其航空航天业务时,该公司在 Quintus Technologies 找到了理想的合作伙伴。热等静压 (HIP) 长期以来一直是全球制造商消除孔隙和去除材料缺陷的首选方法。然而,在墨西哥,直到现在还没有企业能够提供 HIP 服务。 成熟企业的新技术 这家快速发展的热处理专家已成为墨西哥第一家投资 HIP 系统的公司。在对可用系统进行全面评估后,HT-MX 决定与 Quintus Technologies 合作,选择了 QIH 48 M URC® 型压机。URC 是 Quintus 专有的均匀快速冷却功能,将 HIP 和热处理结合在一个工艺中。 HT-MX 首席执行官 Humberto Ramos Fernandez 表示:“当我们开始使用未知技术的新项目时,重要的是尽量减少任何可察觉的风险。而拥有世界领先的设备供应商无疑有助于实现这一点。对于我们这样的运营,我们寻求的是质量、
制造方法:聚合物基复合材料-热固性复合材料制造-铺层工艺、喷涂工艺、纤维铺放工艺、树脂传递模塑、真空辅助树脂传递模塑、压缩成型工艺、纤维缠绕。热塑性复合材料制造-片材成型、注塑成型、片材成型、压延、挤压、吹塑、旋转成型、热成型。金属基复合材料-固态方法-热等静压 (HIP)、箔扩散粘合。液态方法-搅拌铸造、挤压铸造、压力渗透;陶瓷基复合材料-烧结、CVD。第三单元复合材料设计和测试
运营需求和改进内容:AM 为整个国防部提供了生产快速维护老化系统以及开发新一代系统所需的组件的机会。目前,AM 部件主要用于非结构和非关键应用,因为仍然存在无法满足一致机械性能的风险。目前的 AM 实践导致部件包含气流和金属流引起的缺陷。当此类缺陷位于部件内部时,可以使用热等静压修复,但表面缺陷无法修复。需要开发 ICME 建模工具来优化定向能量沉积 (DED) 和激光粉末床熔合 (LPBF) AM 工艺过程中的气流和金属熔合,并为结构关键应用生产非常高质量的组件。
本研究研究了后处理热处理对通过两种不同的增材制造技术(即激光束粉末床熔合 (LB-PBF) 和激光粉末定向能量沉积 (LP-DED))制备的 Hastelloy-X 高温合金的微观结构和力学性能的影响。使用扫描电子显微镜 (SEM) 和电子背散射衍射 (EBSD) 分析检查微观结构,同时使用洛氏 B 法通过宏观硬度测试评估力学性能。在经过几次热处理后彻底研究了合金的微观结构,这些热处理包括应力消除(在 1066°C 下持续 1.5 小时)、热等静压(在 103 MPa 压力下在 1163°C 下持续 3 小时)和/或固溶处理(在 1177°C 下持续 3 小时)。结果表明,对于 LB-PBF 和 LP-DED Hastelloy-X,后处理热处理可产生均匀的晶粒结构以及碳化物的部分溶解,尽管它们的晶粒尺寸不同。关键词:增材制造、Hastelloy-X、微观结构、晶粒尺寸、宏观硬度。
摘要 对采用激光粉末定向能量沉积 (LP-DED) 制备的 316L 不锈钢 (SS) 在经过应力消除 (SR)、固溶退火 (SA) 和热等静压 (HIP) 等各种热处理 (HT) 步骤后的微观结构和拉伸性能进行了表征。使用光学和扫描电子显微镜 (SEM) 分析了 HT 之前和之后的微观结构。进行了准静态单轴拉伸和硬度测试以测量机械性能。拉伸结果表明,与其他 HT 条件(即 SR、SA、HIP、SR+SA 和 SR+HIP)相比,非热处理 (NHT) 条件具有更高的强度但更低的延展性。通过采用两步 HT 条件(即 SR+SA 和 SR+HIP),与单个单步 HT 条件(即 SA 或 HIP)相比,拉伸性能没有显著变化。研究结果表明,除非需要进行 HIP 来最大限度地减少体积缺陷含量,否则 LP-DED 316L SS 不需要进行两步 HT。
本文介绍了通过粉末冶金热等静压 (PM-HIP) 制造的核结构合金的中子辐照活动获得的综合机械测试数据档案。辐照活动旨在方便直接比较 PM-HIP 与传统铸造或锻造。此次活动包括五种常见的核结构合金:316L 不锈钢、SA508 压力容器钢、91 级铁素体钢以及镍基合金 625 和 690。辐照在爱达荷国家实验室 (INL) 的先进测试反应堆 (ATR) 中进行,目标剂量为 1 和 3 个原子位移 (dpa),目标温度为 300 和 400°C。本文包含按照 ASTM E8 规范进行的辐照后单轴拉伸试验、这些拉伸棒的断口分析和纳米压痕收集的数据。通过向核材料研究界公开提供这一系统而有价值的中子辐照机械行为数据集,研究人员现在可以使用这些数据来填充材料性能数据库,验证材料
关于增材制造 (AM) 的热门讨论通常认为 AM 将导致从集中式制造转向分布式制造。然而,分布式配置在实现规模经济方面可能面临更多障碍。我们结合基于流程的成本模型和优化模型来分析制造地点的最佳位置和数量,以及生产、运输和库存成本之间的权衡。我们以商用航空维修市场为例,以钛喷气发动机支架为例,作为非飞行关键部件类别的典型。我们针对三种不同的场景进行分析,一种对应于当前的技术状态,两种代表 AM 技术的潜在改进。我们的结果表明,当考虑到一系列合理的技术改进时,成本最小化的制造地点数量不会有显著变化。在这种情况下,分布式制造仅适用于一组非关键组件,这些组件可以在同一设备上生产,认证要求最低,年需求量达数万个。对于不需要热等静压的组件,分布式制造在小批量生产时具有吸引力。