EEE 498/591 2024 年秋季 课程目标 介绍能源系统的基本概念,特别关注可再生能源系统。本课程将概述能源系统,重点介绍能源转换过程和能源转换过程的不同特征。本课程将涵盖太阳能热能、光伏、风能、水力发电、生物质能和其他可再生技术(如波浪能、潮汐能和海洋热能转换 (OTEC))的基本操作和设计。可再生能源与现有能源基础设施的整合、部署障碍和成本效益也将成为主要关注领域。课程成果 1. 对能源系统、能源转换和能源传输有基本的了解 2. 对太阳能和风能能源资源计算有基本的了解和能力 3. 了解主要可再生能源技术的原理、操作、用途和优缺点 4. 可再生能源系统的设计原则以及将可再生能源整合到现有能源系统中 先决条件 电气工程、物理、材料科学、化学、机械工程或类似领域的三年级/四年级学生。这意味着已经修完了这些领域所需的数学、物理和化学先修课程。对能源、电力和电路的物理原理有一定的入门经验。 讲师 理查德·R·金教授,工程研究中心 (ERC) 177 联系信息 电子邮件:richard.r.king@asu.edu 电话:805-558-4576 上课时间及地点 周二 周四 上午 9:00-10:15 ECG 室 G335 学分 3 学分
效率;经济潜力(包括成本)以及可行潜力(考虑了社会和环境约束)。我们考虑了公用事业规模和屋顶太阳能光伏、聚光太阳能发电、陆上和海上风电、水电、地热发电和海洋(波浪、潮汐、海洋热能转换和盐度梯度能)技术。我们发现,报告的每种能源技术潜力在不同技术之间(通常在同一技术内)相差几个数量级。因此,我们还讨论了作者发现如此不同结果的主要因素。根据本综述并基于最可靠的研究,我们发现公用事业规模太阳能光伏、聚光太阳能发电、陆上风电和海上风电的技术潜力均超过 100 PWh/年。水电、地热发电和海洋热能转换的技术潜力超过 10 PWh/年。屋顶太阳能光伏、波浪和潮汐的技术潜力超过 1 PWh/年。盐度梯度具有高于 0.1 PWh/年的技术潜力。评估可再生能源全球经济潜力的文献(考虑了每种可再生资源的成本)表明,经济潜力高于当前和近期的电力需求。很少有研究计算出考虑社会和环境约束的全球可行潜力。虽然这些范围对于评估可用能源的数量很有用,但它们可能会忽略大规模可再生能源组合的挑战。
1 eric.tervo@nrel.gov 我们提出了一种太阳能热能转换系统,该系统由太阳能吸收器、热辐射电池或负照明光电二极管和光伏电池组成。由于它是一个热机,因此该系统还可以与热存储配对,以提供可靠的发电。来自太阳能吸收器的热量驱动热辐射电池中的辐射复合电流,其发射光被光伏电池吸收以提供额外的光电流。基于详细平衡原理,我们计算出完全集中的阳光的极限太阳能转换效率为 85%,而一个太阳的极限转换效率为 45%,其中吸收器和单结电池的面积相等。理想和非理想太阳能热辐射光伏系统在低带隙和实际吸收器温度下的表现优于太阳能热光伏转换器。它们的性能增强源于对非辐射生成/复合的高耐受性以及将辐射热损失降至最低的能力。我们表明,与低光密度下的太阳能热光伏设备相比,具有所有主要损耗的实际设备可以实现高达 7.9%(绝对值)的太阳能转换效率提升。我们的结果表明,这些转换器可以作为低成本单轴跟踪系统的高效热机。关键词:太阳能、热存储、热辐射、热光伏
效率;经济潜力,还包括成本;以及可行的潜力,这是社会和环境限制的。我们考虑公用事业规模和屋顶太阳能光电 - 浓缩太阳能,陆上和近海风,水力发电,地热电电力以及海洋(波浪,潮汐,海洋热能转换和盐度梯度能量)技术。我们发现,每种能源资源的技术潜力范围在技术范围内的几个数量级上都在技术中。因此,我们还讨论了主要因素,解释了作者为什么发现如此不同的结果。根据这篇综述和最强大的研究,我们发现公用事业尺度太阳光电射电量,浓缩太阳能,陆上风和近海风的技术潜力高于100 PWH/年。水力发电,地热电和海洋热能转化率具有超过10 pwh/年的技术潜力。屋顶太阳能光伏,波浪和潮汐的技术潜力高于1 PWH/年。盐度梯度的技术潜力高于0.1 PWH/年。评估可再生能源的全球经济潜力的文献认为,考虑到每种续签资源的成本,表明经济潜力高于当前和接近现象的电力需求。较少的研究计算了全球可行的潜力,该潜力考虑了社会和环境限制。这些范围对于评估可用能源的幅度很有用,但它们可能会忽略大规模可再生投资组合的挑战。
表格 表 1:2015 年英国 DMC 表 2:拆除废物产生率 表 3:建筑废物产生率 表 4:住宅能源需求 表 5:非住宅能源需求 表 6:2013 年 MSOA Brent 027、Ealing 015 和 Hammersmith and Fulham 001 中可用的二次热能 表 7:Powerday 设施产生的生物质和 RDF 的发电和供热潜力总结 表 8:满足不同土地使用电力需求所需的光伏组件面积估算 表 9:将不同温度下的二次热能转换为 70˚C 的可用热能所需的电力 表 10:循环经济举措长清单 表 11:皇家花园情景的促成因素 表 12:清洁技术产业情景的促成因素 表 13:适应性开发情景的促成因素 表 14:共享社区情景的促成因素 表 15:资源视角尺度表16:经济视角尺度 表 17:社会视角尺度 图 图 1:Old Oak 和 Park Royal 开发公司地图,2015 年(来源:OPDC) 图 2:循环经济应用领域概览 图 3:家庭垃圾组成 图 4:C&I 垃圾组成 图 5:Old Oak 和 Park Royal 的物质流(单位:吨/年) 图 6:Powerday 设施的物质流(单位:吨/年) 图 7:Old Oak 和 Park Royal 的能源流(单位:MWh/年) 图 8:Old Oak 和 Park Royal 的水流量(单位:立方米)
这种动态的无线充电是电动汽车的游戏规则改变者,该技术可实现无线充电。随着电动汽车变得越来越流行,对有效和高效充电解决方案的需求变得更加明显。动态无线充电,在开车或旅途中也称为无线充电,有可能解决与电动汽车行业相关的一些最大问题。太阳能电池板将热能转换为电能。主电路从电网和太阳能电池板接收电源,动态无线电源传输与电动汽车的概念可以在道路上移动或在特殊区域存储时动态充电,这两者都配备了充电站。这种方法消除了手动将汽车连接到充电器的必要性。它采用电磁和感应的通信原理,无线传输能量从道路传输到车辆的电池,而无需实现物理链接。这为研究动态无线充电提供了机会,该概念有可能加快电动汽车行业的接受并带来可持续和高效的运输的新时代。动态无线功率传输(DWPT)研究最广泛的方法。,由于电动汽车的动态无线电气充电系统,无需等到电池充满电。在本文中,我们正在添加收集收集系统,这意味着,当汽车进入电气路线时,将出现一些嵌入式系统以及传输线圈。收集系统接收到汽车中的电池数据。根据电池的数据,它计算出电气化道路上的汽车行驶期间的充电费用,并根据每单位的价格转移了多少电源来收集收取的费用。
缩写 AF - 适应基金 AR6 - 第六次评估报告 ASERT - 加速可持续能源和弹性转型 BESS - 电池储能 BMCs - 借款成员国 CARICOM - 加勒比共同体 CARILEC 加勒比电力公用事业服务公司 CCCCC 加勒比共同体气候变化中心 (CCCCC) CCREEE - 加勒比可再生能源和能源效率中心 CDB - 加勒比开发银行 CDF 加勒比共同体发展基金 COP - 缔约方大会 CREEBC - 加勒比区域能源效率建筑规范 C-SERMS - 加勒比可持续能源路线图和战略 DiMSOG - 灾害管理战略和操作指南 DRE - 分布式可再生能源 EE - 能源效率 ESCO - 能源服务公司 ESG - 环境社会和治理 ESP - 能源部门政策 ESPS - 能源部门政策和战略 ESS - 能源部门战略 EU-CIF - 欧盟-加勒比投资基金 GCF - 绿色气候基金 GDP - 国内生产总值 GE - 地热能GW - 吉瓦 GWh - 吉瓦时 IDB - 美洲开发银行 IDPs - 国际发展伙伴 IEA - 国际能源署 IPCC - 政府间气候变化专门委员会 IPP - 独立电力生产商 IRENA - 国际可再生能源机构 IRRP - 综合资源与恢复力计划 LCOE - 平准化能源成本 MDB - 多边开发银行 MSME - 微型、小型和中型企业 MW - 兆瓦 NDC - 国家自主贡献 NZR - 净零路线图 OCR - 普通资本资源 OECS - 东加勒比国家组织 OIE - 独立评估办公室 OTEC - 海洋热能转换
任务说明美国国家科学、工程和医学院将召集一个特设委员会,确定开发和演示未来探索任务所需的空间核推进技术的主要技术和项目挑战、优点和风险。事实证明,核推进可以为人类快速前往火星提供潜力,单程时间少于 9 个月,包括在火星表面停留的总往返时间少于 3 年。委员会还将确定每项技术的关键里程碑和顶层开发与演示路线图。此外,委员会还将确定成功开发每项技术可实现的任务。具体感兴趣的空间核推进技术包括:1. 高性能核热推进 (NTP),将氢推进剂加热到 2500K 或更高,产生至少 900 秒的比推力。 2. 核电推进 (NEP) 将热能转换为电能,为等离子推进器提供动力,用于高效快速地运输大型有效载荷(例如,功率水平至少为 1 MWe 且质量功率比(kg/kWe)远低于当前 NEP 系统水平的推进系统)。 行动计划 本研究应检查任务说明中所述的开发和演示 NTP 和 NEP 系统的优点和挑战。此项审查应考虑以下因素: 关键的技术和计划挑战和风险; 全尺寸系统级地面演示测试的选项; 放弃地面演示测试而进行飞行演示测试的优缺点; 开发一种燃料元件形式或其他反应堆子系统的前景,这些子系统可能对 NTP、NEP 和国防部战略能力办公室正在考虑开发的移动式 1-10 MW 功率反应堆中的至少两个是通用的; 选择高浓缩铀(HEU)而不是高含量低浓缩铀(HALEU)作为裂变材料所涉及的技术、计划和政策考虑; 美国国家航空航天局、能源部和工业界开发关键子系统技术以准备进行任务注入的能力(即技术就绪级别 6);以及 关键里程碑和顶层开发及演示路线图。
地热交换钻孔场 我们计划钻探 2,000 个地热交换钻孔,目前已完成一半以上,以在校园范围内推广地热交换技术的使用。刘易斯艺术中心、湖畔研究生宿舍、劳伦斯公寓、布隆伯格、巴特勒学院、新学院西校区和叶学院目前均已在使用这项技术。 TIGER 和 CUB 这些新建筑将容纳扩展地热交换供暖和制冷系统所需的热泵和电气设备。TIGER(热集成地热交换资源)和 CUB 不是后台服务建筑,而是将融入校园,支持普林斯顿对可持续发展的承诺。每栋建筑附近的两个热能储存罐 (TES) 用于储存热水和冷水。 转换为区域热水 我们正在安装超过 13 英里的新地下热水分配管道,将蒸汽热能转换为热水热能。热水所需的管道设计与目前用于蒸汽分配的不同,这两种技术背后的科学原理也不同。最终,新的热水管道和新系统将使每栋校园建筑都能使用地热交换供暖和制冷。改造普林斯顿的冷冻水厂我们已经将以可靠性和能源效率而闻名的 Cogen 电厂从冷冻水厂和热电联产 (CHP) 蒸汽厂改造为采用热水地热交换技术的更名后的西电厂。Cogen 将与 TIGER 一起运营,以高效(经济和热能)满足校园供暖、制冷和部分电力负荷需求。这两家电厂还将互连,以便每个电厂都可以部分地相互备份。改造建筑系统完成校园地热交换的一个重要步骤是改造现有校园建筑的供暖和制冷系统。这些改造将持续多年。完全改造后,大学将使用地热交换系统为 180 多栋建筑供暖和制冷,每年节省数百万美元。
课程目标 掌握不同类型的可再生能源和储存系统的基础知识。 了解不同形式的能源转换的基本概念。 将物理学的基本概念应用到不同的能源转换装置中。 识别不同可再生能源的优点和缺点。 从可靠性和经济性方面分析各种形式的能源。 第一单元:直接太阳能(12 小时) 太阳能供应 - 太阳能利用的历史 - 基于从阳光中捕获热量的技术 - 太阳能热水系统 - 太阳能炊具 - 用于烹饪的太阳能蒸汽发电系统 - 建筑物的被动式太阳能供暖/制冷 - 太阳能空调 - 太阳能制冷 - 太阳能海水淡化 - 盐生产和太阳能池 - 农作物干燥 - 将太阳能转换为电能的技术 - 热机:聚光太阳能热能系统 - 光伏电池。第二单元:生物质能(12 小时)生物质的组成 - 能源生产的生物质来源 - 粮食作物 - 富含碳氢化合物的植物 - 废弃物 - 杂草和野生植物 - 木质纤维素生物质:速生油脂和木本植物 - 从生物质中获取不同类型燃料的技术路线 - 生物质的热化学转化 - 生物化学处理 - 新兴技术。第三单元:风能和波浪能(12 小时)利用风能和风能 - 风车的设计 - 风力发电系统概述 - 风力涡轮机尺寸 - 风力发电地点和特性 - 储存 - 波浪能发电 - 势能 - 动能 - 波浪能转换装置 - 浮标波浪能转换 - 高位水库造浪机 - 海豚式波浪能机 - 其他造浪机 - 波浪能的优点和缺点。海洋热能转换。单元四:地热能(12 小时)地热能的起源和性质 - 能量提取 - 高焓地热含水层 - 低焓储量 - 湿蒸汽系统 - 干蒸汽系统 - 局限性。单元五:可再生能源的存储(12 小时)能量存储系统 - 以电能形式存储 - 以机械能形式存储 - 以化学能形式存储 - 以热能形式存储。