摘要:厌氧消化(AD)用于治疗由于人口增长和全球经济的扩展而产生的市政固体废物(MSW)的不断增长的有机分数。广泛应用AD导致残留固体消化不断增加,这必然需要进一步处置。有必要提高广告效率并降低大量消化率。这项研究研究了在不同的热解温度(300℃,500℃和700℃)以及500℃下的玉米毒生物炭及其对AD性能的影响。生物炭的pH值随着热解温度的升高而增加,而电导率则降低。大孔主导了生物炭的孔径,并随着热解温度的升高而降低。生物炭制备温度显着影响了效率。在700℃制备的生物炭胜过其他组,将沼气产量提高了10.0%,有效地缩短了滞后时间,并将平均化学氧需求(COD)降解率提高了14.0%。添加生物炭(700°C)和玉米秸秆生物炭增加了挥发性脂肪酸(VFAS)氧化细菌的相对丰度,从而加快了AD系统中的酸转化率。Biochar促进了直接种间电子的电子传递,在DMER64和Trichococcus之间使用甲烷萨塔,从而增强了沼气的生产性能。这些发现证实了源自消化酸盐的生物炭促进了MSW的AD系统中的沼气产生和酸的转化。此外,生物炭具有改进的AD稳定性,这代表了回收消化酸盐的有前途的方法。
摘要:碳纳米植物是一类碳纳米 - 合金支出,已通过来自各种前体的不同途径和方法合成。所选的前体,合成方法和条件可以强烈改变所得材料及其预期应用的理化特性。在此,通过将热解和化学氧化方法结合使用D-葡萄糖从D-葡萄糖中合成碳纳米植物(CND)。在产物和量子产率上研究了热解温度,氧化剂的等效物和回流时间的影响。在最佳条件下(300°C的热解温度,4.41等于H 2 O 2,90分钟的回流)CNDS分别获得了40%和3.6%的产品和量子收率。获得的CND被负电荷(ζ - -potential = - 32 mV),非常分散在水中,平均直径为2.2 nm。此外,在CNDS合成过程中,引入了氢氧化铵(NH 4 OH)作为脱水和/或钝化剂,导致产物和量子产率的显着提高约为1.5和3.76倍。合成的CND显示出针对不同革兰氏阳性和革兰氏阴性细菌菌株的广泛抗菌活性。两个合成的CND都会导致高度菌落形成单位还原(CFU),大多数测试细菌菌株的范围从98%至99.99%。然而,在没有NH 4 OH的情况下合成的CND,由于充满氧化基团的负电荷的表面,在区域抑制和最小抑制浓度方面表现更好。含有高氧纳米模型的抗菌活性升高与其ROS形成能力直接相关。关键字:D-葡萄糖,热解,氧化,细菌感染,最小抑制浓度,CFU降低■简介
活性炭是在高温炉中使用蒸汽活化法从锯末中生产的。津巴布韦拥有南部非洲最大的木材储量(每年约 500 000 吨),因此大多数企业家都涉足木材加工。这项事业产生了大量锯末垃圾场,如果把它们随意丢弃,则没有任何经济用途。每年有 10000 公吨的锯末被浪费掉。研究表明,在 500 ℃ ��6 ���� �������� 的流化床炉中碳化锯末可以生产活性炭。该项目的目标是每天碳化 3.4 吨锯末以生产活性炭。这是一种处理锯末的经济方法。每天将生产大约 2.04 吨活性炭。进行了实验以研究各种工艺参数(例如粒度、热解温度和活化时间)对活性炭质量的影响。活性炭产量不断增长,对用于废水处理的需求也日益增加。此外,批量吸附研究是使用亚甲蓝进行的。本研究的目的是调查锯末炭是否可以用作生产商业活性炭的低成本替代品。该项目在经济上也是可行的,因为它需要大约 4 年的时间才能收回投资者的投资回报率,投资回报率为 30.21 美分/美元
摘要 当前的能源危机促使了可再生能源和储能材料的开发和利用。本研究以乙酰丙酸 (LA) 和 1,4-丁二醇 (BDO) 为原料,通过酶法和化学法合成了新型乙酰丙酸 1,4-丁二醇酯 (LBE)。酶法在合成过程中表现出优异的性能,LBE 产率为 87.33%,而化学法副产物较多且能耗较高。此外,还评估了所得 LBE 作为相变材料 (PCM) 的热性能。差示扫描量热法 (DSC) 和热重分析 (TGA) 表明熔化温度、熔化潜热和热解温度分别为 50.51 ℃、156.1 J/g 和 150~160 ℃。与传统石蜡相比,制备的PCM具有更高的相变温度、更高的熔化潜热和更好的热稳定性。添加膨胀石墨(EG)后,热导率可提高至0.34 W/m/k。综上所述,LBE作为低温相变储能材料在储能应用中具有巨大的潜力。关键词:乙酰丙酸,多元醇酯,热性能,酶法,热可靠性图文摘要
太空领域的研究和使用,包括最近对月球及更远太空的载人航天探索的复兴,推动了对航天器热防护系统 (TPS) 的更高性能材料的搜索。陶瓷和高性能碳都表现出适合 TPS 应用的材料特性,但可以使用增材制造 (AM) 方法最大限度地提高其性能。振动辅助打印 (VAP) 是一种新开发的 AM 工艺,可以使用高粘度的陶瓷形成聚合物与固体陶瓷颗粒的混合物来制造零件。这项工作探索了利用 VAP 的陶瓷夹层 TPS 的 AM。TPS 外层由碳化硅 (SiC) 组成,具有高抗氧化性、高熔点和低热导率。薄的中间层由碳基材料组成,可提供高平面热导率以重新分配热量。数值模拟表明,这种配置可有效降低模拟再入条件下的最高温度。由聚碳硅烷聚合物和纯 SiC 粉末制备出高粘度混合物,可使用 VAP 进行 3D 打印,并使用碳负载或碳纤维负载细丝通过标准热塑性挤出打印用于组装的中间层。SiC 组件固化温度高达 248.8°C,热解温度高达 1,600°C,并通过 SEM、EDS 和 XRD 进行表征并测试抗压强度。
摘要:构建的湿地系统(CWS)是在物理和生物学上构造的系统,可以模拟天然湿地,可用于从几种污染源中处理废水。本评论旨在综合有关在基板中整合生物炭的湿地的更新文献。这项研究的重点是通常融入该治疗生态技术的生物炭特征以及通常使用的原料(污水污泥,农业废物和木材,食物废物和海洋原料)。生物炭质量受到制备这种生物炭的条件(热解温度,加热时间和速率等)的影响。还描述了用于废水处理的生物炭的特性,其实施对CW底物的影响及其治疗效率。几个因素改变了CWS中污染物的去除效率,例如底物化学和物理礼节,液压保留时间,氧合和氧化还原条件。此外,过滤器中的生物炭的实施水平和大型植物的选择对于治疗系统的效率至关重要。已经报道并进行了比较的不同配置,并进行了比较。建造的湿地(CWS)是构造的系统,可以模拟天然湿地,可用于通过物理,化学和生物学除发过程从几种污染来源处理废水。这项工作旨在批判性地回顾有关构造的湿地(CWS)在基板中整合生物炭的文献。详细说明,该研究的重点是通常融入该处理生态技术的生物炭的特征以及用于准备材料的过程,包括热转化的条件以及所使用的原料种类(例如,农业,食物,木质废物,木质废物,污水污泥,污水污泥和Argal Marine Marine Marine Marine Fudtsock)。基于文献综述,发现原料必须富含碳(C),而矿物质则必须较低才能产生优质的生物炭,即大孔体积和高比表面积,因此可以有效从废水中去除污染物。生物炭质量受到制备生物壳的条件的影响(例如,热解温度,加热速率和碳化时间)。也已经描述了用于废水处理的生物炭的特性,其实施为CW底物及其治疗效率的作用。几个因素改变了CWS中污染物的去除效率,例如底物化学和物理性质,液压保留时间,氧合和芦苇床中的氧化还原条件。另外,在过滤器中实现生物炭的模式和大型植物的选择对于调节治疗系统的效率至关重要。Phragmites Australis是先前研究中最常用的植物,因为它具有很大的优势。报告并比较了将生物炭集成到湿地中的CWS的不同构型,并进行了比较。在垂直流CWS(VF-CWS)中,该系统主要研究,几个
摘要:人们穿衣服以进行温暖,生存和现代生活的必要性,但是在现代时代,生态友好,缩短生产时间,设计和智慧也很重要。确定数据系列之间的关系并验证每个数据系列的接近性,灰色关系分析或GRA应用于纺织品,在纺织品中,无缝键合技术增强了组件之间的键。在这项研究中,聚氨酯前聚合物,2-羟基乙基丙烯酸酯(2-HEA)作为终端封顶剂,N-辛基丙烯酸酯(ODA)作为光吸剂用于合成双溶液的聚氨酯热融合粘合剂。taguchi质量工程和灰色关系分析用于讨论NCO的不同摩尔比:OH的影响以及添加丙烯酸丙烯酸甲酯对机械强度的摩尔比的影响。傅立叶变换红外光谱(FTIR)的结果显示了前聚合物的聚合反应的终止,并且在1730 cm -1时的C = O峰强度,表明有效键合与主链。晚期聚合物色谱法(APC)用于研究与丙烯酸丙烯酸甲酯键合的高分子量(20,000–30,000)聚氨酯聚合物聚合物,以达到光热术效应。热重分析(TGA)的结果表明,聚氨酯热融合粘合剂的热分解温度也增加,并且它们显示了多水醇的最高热解温度(349.89℃)。此外,使用双固定光热聚氨酯热融合粘合剂检测到高骨强度(1.68 kg/cm)和剪切强度(34.94 kg/cm 2)值。信噪比也用于生成灰色关系程度。据观察,NCO:OH的最佳参数比为4:1,单体的五摩尔。使用Taguchi质量工程方法来找到单质量优化的参数,然后使用灰色关系计算来获得多质量优化的参数组合,以热固化聚氨酯热融化粘合剂。该研究旨在满足纺织工厂中无缝粘合的要求,并通过设置可以有效提高生产速度并减少处理时间和成本的目标值来优化实验参数设计。
传统的碳基能源转换和利用方式过于粗暴,给生态循环带来了不可逆转的破坏。对清洁、高效和可再生能源的需求促使政府和研究人员开展研究项目,旨在通过理论和技术上的科学突破,为实现能源可持续性做出贡献。例如,2019年,国家自然科学基金启动了“有序能量转换”(OEC)基础科学中心项目。该项目由西安交通大学动力工程多相流国家重点实验室郭烈金教授牵头,汇集了中国许多顶尖的能源相关研究团队,特别是在太阳能制氢/燃料领域。为了进一步推进太阳能制氢/燃料领域的研究,《能源光子学杂志》第10卷第2期的这一专题包括了八篇原创研究文章,探讨了太阳能制氢或太阳能制燃料的基础和应用方面。本专题旨在介绍用于光催化、光电化学和光伏太阳能氢/太阳能液体燃料生产的先进纳米材料、器件和集成系统的研究,以及与界面和表面过程和反应机理相关的结果。本专题中有几份报告代表了这些领域。Naixu Li 等人通过合成具有片剂形态的 Ni 掺杂介孔 TiO 2 纳米晶体以及 Ag 助催化剂证明了光催化 CO 2 还原的增强效果。Jiangang Jiang 等人报告了通过两步水热法使用不同的镉前体改进一系列 3-D ZnO/CdS 光电极,从而获得了具有开放多孔形态的 3-D 结构。Yuzhou Jiang 等人研究了混合牺牲剂对两种典型光催化剂(即 gC 3 N 4 和 TiO 2 )的氢释放的影响。张建等报道了具有Z型异质结的Fe 2 O 3 ∕gC 3 N 4 复合材料的优异光催化性能。郭鹏辉等比较了不同暴露面的ZnO的光学性能、表面电荷状态和光催化行为。贾娜娜等研究了不同热解温度对ZIF-67/海藻酸纤维制备的碳纤维涂覆Co@N掺杂多孔碳电催化活性的影响。本部分还介绍了更多应用,包括几篇关于光传输和光热系统研究的报告。张林琪等通过分析不同天气条件下的气溶胶粒子样本,展示了太阳辐射传输和参与介质的特征。白波等报道了一种光热聚甲基倍半硅氧烷-乙烯基三甲氧基硅烷-聚吡咯干凝胶,可通过一锅合成途径高效分离太阳能驱动的粘稠油/水。希望本专题中介绍的文章能够提供一些关于太阳能氢/燃料生产方面的代表性快照,从材料科学到系统工程。