通过降水加热诱导海洋上的正均匀PPE异常,从而导致能量下降到扰动动能(PKE)和大规模的异常气旋。对于NAT 1,三极降水异常会导致三极PPE异常。发生异常的能量转化,在PPE异常梯度很大的情况下,由热风关系得出的能量平衡来解释。PKE在15 8和50 8 N(25 8和75 8 N)左右增加(减少),在亚热带和亚极区域形成异常的反气旋和旋风,分别是北大西洋振荡(NAO)。NAT 2和AMO 2的反向保持。作为海洋模式的阶段交替,依次诱导Nau 2,Nao 2,Nau 1和Nao 1。在多年循环中,累积的能量过程与延迟效应有关,而NAU和NAO之间的方差解释差异归因于反馈机制。
摘要:在湍流热风(TTW)下的垂直浮力频率B F ttw f在限制冬季的表面混合层方面起着重要作用。到目前为止,大多数全球海洋模型都太粗糙而无法解决此过程。在本文中,提出了B ttw F的量表参数化,并在冬季黑鲁道扩展的区域海洋模拟层次结构中实施,水平分辨率范围为27至1 km。参数 - ization取决于科里奥利参数,模拟模拟的湍流垂直粘度,水平密度梯度以及缩放关系,以调整模型水平分辨率对模拟水平密度梯度的影响。它显示了在粗分辨率模拟(27、9和3 km)以及在1 km模拟中核对B TTW F之间差异的良好技能,其中B TTW F可以很好地解决。此外,参数化的实现改善了粗分辨率模拟中表面混合层中所述的层化。
应用 基于微控制器的新型 DIGITAL MICROFLAT 系列控制器是 DIGITAL MICROFLAT “N” 系列的演进,专门设计用于控制非永久性运行应用中的气体燃料(燃烧回路中有或没有风扇)、液体或固体燃烧器。这些系统配有非易失性或易失性锁定装置,在第一种情况下,只能通过手动重置系统才能从安全锁定状态重新启动控制器,而在第二种情况下,只能通过中断电源并随后恢复电源(而不是通过切换加热需求设备)才能从安全锁定状态重新启动控制器。本系列的自动控制器适用于: - 组合式、加热式、蒸汽锅炉; - 热风发生器; - 辐射管加热器; - 风扇辅助对流加热器; - 热水器; - 高压清洗机; - 熔炉; - 一体式燃烧器; - 预混、生物质燃烧器或装饰性壁炉。全新数字 MICROFLAT 系列保留了之前 MICROFLAT 和数字 MICROFLAT 系列的主要功能和可靠性,此外还配备了与控制无线设备、无刷电机、气压和空气流量相关的配件,以及与驱动辅助电机、直流阀、调节阀相关的选项,其中包括新型 Brahma 阀类型 VCMxx(带或不带压力控制)。此外,该系列还可用于使用液体(油)或固体燃料(生物质)的设备。基于微控制器的技术的灵活性为安装时间和操作模式创造了不同的可能性。本系列系统适用于符合 EN746-2、EN676、EN525、EN1020 和 EN1319 标准的燃气燃烧器、符合 DIN4794 标准第 2 部分(1980 年 12 月版,涉及热风发生器,仅适用于 TW=20s 和 TS=5s 版本)的燃油燃烧器或符合 EN303-5 标准的生物质燃烧器。24V);特点 该系列的主要特点有: − 符合欧洲燃气用具指令 2009/142/EC 的 EC 型式认证(CE PIN 0476CQ0671); − 符合 EN298:2012(自动燃气和燃油燃烧器控制系统和火焰检测的欧洲标准)和 EN60730-2-5(带 C 类软件的自动控制的欧洲标准); − 基于微控制器的技术,可实现精确且可重复的安装时间,两个独立的安全触点用于驱动阀门; − 可以驱动 Brahma 调节阀 VCMxx 和 VCMxx *S 型(带压力传感器的电动阀); − 可以通过高压调制电路或桥式整流器(集成)驱动第一个直流阀; − 输出可用于控制第二级(间歇先导系统)、控制辅助风扇或用作常开辅助触点(此触点未通过加强隔离与主电源电压隔离,因此不适合控制 SELV 电路 - 安全超低压,例如
- 如果电源线损坏,必须由飞利浦、其服务代理或类似合格人员更换,以避免发生危险。 - 仅将本设备连接到接地的墙壁插座。务必确保插头正确插入墙壁插座。 - 本设备不适用于通过外部定时器或单独的远程控制系统进行操作。 - 使用过程中,可触及的表面可能会变热。 - 8 岁及以上的儿童以及身体、感官或精神能力较差或缺乏经验和知识的人,如果他们在监督或指导下以安全的方式使用本设备,并了解所涉及的危险,则可以使用本设备。儿童不得玩耍本设备。除非儿童年满 8 岁且有人监督,否则他们不得进行清洁和用户维护。 - 将本设备及其电源线放在 8 岁以下儿童接触不到的地方。 - 请勿将本设备靠在墙壁或其他设备上。在设备的背面、两侧和上方至少留出 10 厘米的自由空间。请勿在设备上放置任何物品。 - 热风煎炸时,热蒸汽会通过出风口释放。请将手和脸与蒸汽和出风口保持安全距离。此外,从设备上取下锅具时,请小心热蒸汽和空气。
摘要:在大规模生产 LiNi x Mn 1 − x − y Co y O 2 (NMC) 正极的过程中,N-甲基-2-吡咯烷酮 (NMP) 溶剂的蒸发通常发生在对流烤箱中。本文旨在缩小工业对流干燥方法与实验室规模通常使用的传统真空烤箱之间的差距。多项研究侧重于模拟对流干燥机以降低能耗,但很少有研究通过实验研究其对正极质量的影响并将其与真空干燥的正极进行比较。开发了一种专为 LIB 电极干燥而设计的对流烤箱,以研究干燥动力学对小电极表面裂纹 (< 1400 µm 2 ) 形成和粘合剂迁移的影响。通过热重分析 (TGA) 揭示了干燥温度为 50 和 100 °C、热风速度为 0.5 和 1 m/s 时的干燥动力学。即使在这些相对较低的干燥速率下,比较两种干燥方法时仍检测到结构差异,这说明了在实验室中实施代表工业过程的干燥条件的重要性。表面裂纹随干燥速率增加而增加,压延后出现多处裂纹的阴极在放电电流 > C/2 时获得更高的放电容量。样品制备较少的替代表面分析足以确定粘合剂迁移的相对变化。
摘要这项研究研究了聚会岛上的热环流(21°07'S 55°32'E),重点是该地区的复杂地形。分析了来自Bio -Maïdo运动的观察结果,以及使用Mesonh模型进行了2天的高分辨率模拟,以了解热驱动机制。该模拟的水平分辨率为100 m,并采用垂直拉伸的网格,在最低水平下达到1 m的分辨率。确定了两个不同的风度,其特征是夜间30 m厚的层内盛行的katabatic流,而白天在150至200 m的层中表现出一个分离的流动。通过对表面测量结果进行验证确认了模拟,从而实现了热风循环的详细研究。结果表明,贸易风的强度显着影响热循环的发展。复杂的分层结构。在7 m s -1的强度下,贸易风阻止了坡度上的热环流的发展,并导致局部和区域循环之间的收敛区的出现。对微风建立期的分析表明,katabatic流量在35分钟内稳定,比整形流动更快,这需要110分钟。动量和热预算分析提供了对热循环的主要驱动因素的见解:浮力加速,受解剖流量开始期间局部表面加热的影响以及在katabatic流量开始期间局部表面冷却。
摘要 Polygonum cognatum Meissn. 是一种野生可食用植物,在土耳其被称为 madimak。其嫩芽在春季栽培并用作蔬菜。本研究评估了不同干燥处理对 madimak 植物颜色属性的影响,这些植物使用两种不同的方法干燥:热风干燥和微波干燥。风干处理分别在 60、70 和 80 °C 下进行。微波干燥使用四种不同的微波功率水平进行,范围在 160 至 750 W 之间。madimak 的微波干燥比热风干燥更快。随着微波功率的提高,干燥时间大大减少。干燥过程在 0.058 到 0.308 小时之间完成,具体取决于微波功率水平,而热风干燥在 2.583 到 4.166 小时之间。微波干燥对样品颜色质量的影响不如热风干燥大。微波干燥植物的叶绿素 a、叶绿素 b 和总叶绿素含量显著保留。颜色和叶绿素属性均表明,与热风或常温干燥相比,微波干燥更适合马迪马克植物。研究发现,在 750 W 微波功率下,颜色变化最小,叶绿素含量最高。此外,80 °C 热风干燥和 160 W 微波功率水平的最低比能量需求分别为 44.58 kWh/kg 和 107.00 kWh/kg。结果表明,热风干燥温度之间的比能量需求没有显著差异,而微波功率水平之间的差异很大。关键词:Madimak、微波、热风、颜色、比能、可食用植物、叶绿素引言叶绿素是分布最广的植物色素,叶绿素 a 和 b 在食品技术中的重要性源于它们在绿色蔬菜中的作用(King 等人,2001)。叶绿素 a 和叶绿素 b 是主要形式,通常存在于常用于食用的高等植物中,它们的比例大约为 3:1。叶绿素 a 和 b 都是四吡咯酞菁氧合物的含镁衍生物。叶绿素 a 和叶绿素 b 在感知颜色和热稳定性方面也不同。叶绿素 a 呈蓝绿色,叶绿素 b 呈黄绿色(Cui 等人,2004)。它们极易在加工和储存过程中降解。叶绿素转化为脱镁叶绿素和其他衍生物会导致从鲜绿色变为暗橄榄绿色或橄榄黄色,最终被消费者视为品质的下降 King 等人(2001 年)和 Ahmed 等人(2001 年)。叶绿素保留对于确定热脱水绿色植物的最终质量非常重要。在较高温度和酸性条件下,叶绿素环中的中心镁被两个氢离子取代,绿色叶绿素转化为橄榄棕色脱镁叶绿素。在约 60–80 o C 的较低温度下,叶绿素酶活性增加,形成绿色叶绿素,然后叶绿素易受镁损失的影响,从而形成橄榄褐色脱镁叶绿素 (Cui 等,2004)。颜色是植物产品的重要质量属性,叶绿素已被用作绿色蔬菜的质量指标 (Guan 等,2005)。Polygonum cognatum Meissn. 是一种野生植物,在土耳其语中称为“madimak”。这种可食用植物是一种多年生细长木本植物。它生长在海拔 720-3000 米的路边、斜坡和悬崖上。春季收集带叶的嫩芽 (Yildirim 等,2003)。植物的新鲜叶子和茎可作为蔬菜食用。干燥的植物可用作药用植物 (Ozbucak 等,2007)。在土耳其民间医学中,它被用于各种目的,例如其利尿作用和治疗糖尿病(Yildirim 等人,2003 年)。脱水是最古老的食品保存方法之一,是食品加工中非常重要的一个方面。产品在干燥过程中产生的热损伤与温度成正比
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。