别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
摘要:栅极绝缘体是决定石墨烯场效应晶体管 (GFET) 性能的最重要因素之一。栅极电压对导电通道的良好静电控制需要较薄的栅极氧化物。由于缺乏悬挂键,通过原子层沉积 (ALD) 工艺生长的栅极介电膜通常需要种子层。种子层可实现介电膜的高质量沉积,但可能导致最终介电膜厚度大幅增加。针对该问题,本文提出了一种改进工艺,在原子层沉积之前使用蚀刻溶液去除自氧化的 Al 2 O 3 种子层,Al 2 O 3 残留物将提供石墨烯表面的成核位点。受益于电介质膜厚度的减小,与使用标准 Al 蒸发种子层方法的 GFET 相比,使用此方法作为顶栅电介质膜沉积工艺的 GFET 的跨导平均增加了 44.7%。
Elemental 的石墨烯是乱层石墨烯,即层间相互作用较低的多层石墨烯,这意味着层堆叠遵循一定的旋转角度,从而产生错位。乱层石墨烯相互作用点较少,因此其特性和功能与单层石墨烯相似。
基于石墨烯的纳米材料(GBN)已成为广泛研究领域的高度有希望的纳米材料。1由于其独特而独特的特性,例如化学惰性,特殊的机械强度,高导热率和出色的透射性,GBN在能量,电子,光子学,传感器和生物医学应用等不同领域中显示出巨大的潜力。现在可以大量生产2 GBN,这导致了基于石墨烯的技术的开发,3,预计到2025年,市场估算预计将超过1.1亿英镑。4鉴于它们的探索越来越大,并且具有职业和公众接触的潜力,GBN对健康的影响已成为一个显着的关注点。5最近的一个例子是在世界各地生产和分布的石墨烯涂层面膜的使用
国际标准化组织提供了各种术语来解释石墨烯及其在2017年的工作,以避免遵守查询中的定义。 div>“基于ISO的术语”可以描述如下:•石墨烯:一层碳原子。 div>也称为牙石墨烯或单层石墨烯或两层石墨烯:两个定义明确的重叠石墨烯层; •低层石墨烯:3-10个定义明确的重叠石墨烯层。 div>•石墨纳米层:侧尺寸〜100 nm至100微米,并从1到3 nm厚的石墨烯。 div>
摘要 —比特币的崛起使区块链技术成为主流,放大了其潜力和广泛用途。虽然比特币已经变得非常出名,但其交易率并没有相应提高。挖掘一个区块并将其添加到链中仍然需要大约 10 分钟。这一限制凸显了寻求解决低吞吐量交易率的扩展解决方案的重要性。区块链的共识机制使点对点交易变得可行,并有效地消除了对集中控制的需求。然而,正如我们提到的比特币的区块创建率,与集中式网络相比,分散式系统也导致速度和吞吐量较低。为了解决这些问题,已经实施了两种主流的扩展解决方案,即第 1 层扩展和第 2 层扩展。第 1 层可扩展性的增强发生在传统区块链运行的地方。本文深入研究了第 1 层协议的组件以及直接改进底层区块链的扩展方法。我们还指出,尽管由于第 1 层存储成本高且延迟高,第 1 层解决方案仍存在固有的局限性,尽管已经进行了改进。此外,我们还讨论了第 2 层协议,即高级可扩展性技术,通过处理主网外的交易来提升区块链性能。我们的研究结果表明,第 2 层协议及其各种实现(例如汇总和通道)在交易吞吐量和效率方面明显优于第 1 层解决方案。本文详细讨论了这些第 2 层扩展方法,旨在让读者全面了解这些协议及其有效性的底层逻辑。关键词 密码学、区块链、可扩展性、Web3
摘要:这项研究的目的是使用反射率光谱计算WSE 2层厚度,并使用Nemess 2D材料反射光谱使用NanoHub.org进行与石墨烯进行比较,该研究的数据被收集了。根据ClinicalCalc.com,将样品分为WSE2层的(n = 20),石墨烯层(n = 20)。在保持以下值的同时计算了总样本量:alpha误差阈值= 0.05,入学率= 0.1,95%置信区间= 80%,而G-power = 80%。使用SPSS软件通过独立样本测试进行比较。与石墨烯层(2.0669)相比,WSE 2层和石墨烯层的厚度具有统计学上的显着差异。WSE2层(3.4717)显示出更好的结果。与石墨烯层相比,WSE 2层具有更大的厚度。
近年来,由于其独特的特性以及在气体和生物传感器中的潜在应用,对磁石墨烯(MGO)的兴趣显着增加。在本评论文章中给出了MGO合成技术的广泛摘要,例如化学还原,水热合成和溶剂热合成。及其在气体和生物传感器中的许多用途,MGO的灵敏度,选择性和稳定性也被突出显示。除了可以鉴定氨,硫化氢和挥发性有机化合物的气体传感器外,MGO还可以用作鉴定蛋白质,葡萄糖,胆固醇和DNA的生物传感器。文章的结论讨论了该领域的未来方向以及在各个行业的MGO研究中的可能应用。
气密性测试要求旨在测量气密性并确定与空气泄漏相关的问题,这些问题会影响整体建筑性能、能源效率和室内空气质量。这是通过在 75 帕斯卡 (Pa) 的压力下对建筑物外壳进行整栋建筑空气泄漏测试来实现的,该测试模拟了建筑物因温度和风的变化而经历的典型情况。该实践包括密封所有可操作的开口并对建筑物加压以测量通过外壳的空气泄漏阻力。表 4 提供了机构和商业建筑的性能和提交要求摘要。