&这些作者为这项工作做出了同样的贡献,应被视为联合第一作者 *通讯作者。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。 黄)。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。黄)。
本研究旨在调查基于椰子油的相变材料 (PCM) 在建筑储能应用方面的热性能。椰子油被归类为由可再生原料制成的脂肪酸组成的有机 PCM。但低热导率是有机 PCM 的主要缺点之一,必须加以改进。石墨烯可以成为提高有机 PCM 热性能的有效材料。在本研究中,使用了潜热容量为 114.6 J/g 和熔点为 17.38 ◦ C 的椰子油。通过将石墨烯超声处理到椰子油中作为支撑材料来制备 PCM。制备的 PCM 的质量分数为 0、0.1、0.2、0.3、0.4 和 0.5。使用 KD2 热性能分析仪在循环恒温浴模拟的不同环境温度 5、10、15、20 和 25 ◦ C 下进行热导率测试。通过差示扫描量热法测定潜热、熔点和凝固点,使用热重分析 (TGA) 测定热稳定性,使用透射电子显微镜和傅里叶变换红外光谱分别检查形态和化学结构。这项研究的结果表明,在椰子油中添加石墨烯可改善热性能,在 20 ◦ C 时,0.3 wt% 的样品中改善效果最明显。由于 PCM 内的分子运动,潜热降低了 11%。然而,TGA 表明,复合 PCM 在环境建筑温度范围内表现出良好的热稳定性。
界面改性及应用。纳米材料。2021;11(10):2539。[9] B. Shen、W. Zhai、W. Zheng。超薄柔性石墨烯薄膜:一种具有高效 EMI 屏蔽的优异导热材料。Adv Funct Mater。2014;24(28):4542-4548。[10] Q. Hu、X. Bai、C. Zhang、X. Zeng、Z. Huang、J. Li 等。具有高平面外热导率和柔韧性的定向 BN-硅橡胶复合热界面材料。复合材料 A 部分:应用科学与制造。2022;152:106681。
本文研究了一种含有纳米封装相变材料 (PCM) 和金属壳材料的创新传热流体在太阳能储热系统中的光热转换性能。研究并比较了壳厚度、芯尺寸、壳材料类型、PCM 质量和壳体积浓度对储热介质热性能的影响。结果表明,水基 Ag、Au、Cu 和 Al 纳米流体的传热速率分别为 6.89、5.86、7.05 和 6.99 W,而在纯水中添加石蜡@Ag、Au、Cu 和 Al 纳米胶囊形成的浆液分别使传热提高了 6.18%、13.38%、10.8 和 11.33%。基于金属纳米颗粒的壳材料通过增强储热介质的太阳辐射捕获能力进一步增加了温度和能量存储增益。具体而言,根据 PCM 的质量浓度,石蜡@Cu 浆料的存储容量增加了 290%。由于 Ag 颗粒的壳厚度也从 8 纳米减小到 2 纳米,它使浆料的热能存储能力增加了 7%。然而,纳米胶囊尺寸的增大导致表面积与体积比 (SA:V) 聚集,从而降低了浆料的光热转换。因此,随着核尺寸从 10 纳米增加到 40 纳米,石蜡@Cu 浆料的热能存储行为降低了 5%。此外,壳中 Al 颗粒的体积浓度的增加令人惊讶地使热能存储降低了 5%。最后,还对石蜡基固体 PCM 进行了实验测试,以验证不同风速和太阳辐射下的比热容模型。
对无定形石墨烯中热性质的研究提出了材料科学和工程的独特挑战和机会。传统上,对无定形碳材料的热性能的研究依赖于为原始石墨烯设计的经验潜能,将这些模型扩展到其预期的适用性领域之外[1]。这项研究旨在通过利用高效且高保真机器学习跨原子潜力(MLIP)来克服这些局限性。实现材料势能表面(PE)的准确但计算有效的表示非常重要。尽管密度功能理论(DFT)之类的方法通过明确考虑系统中的电子而提供了详细且可转移的见解,但它们的适用性受到较差的可扩展性随着系统大小的增加而阻碍,将其实际用途限制在相对较小的系统中,并限制了模拟的持续时间。对经典途径中现有方法论的批判性检查表明,尽管当前的碳材料MLIP具有高度的准确性,但它们在无定形石墨烯研究中的实用性受到大量计算需求的阻碍[2]。在处理计算费用可能变得过于刺激的大型,无序的系统时,这种限制特别明显。解决这一差距时,我们的工作试图使用具有出色可扩展性的非晶石墨烯的MLIP,例如基于Allegro框架的电势,Allegro框架是一种严格的局部局部含量的深层神经网络间原子势[3],可以使用GPU进行加速。在分子动力学领域(MD)中,GPU并行化的出现已经改变了游戏规则,可显着增强计算能力。可伸缩性对于我们的研究至关重要,该研究涉及非晶石墨烯结构的复杂热性能,该结构以由于无序引起的计算强度而闻名。通过通过蒙特卡洛算法掺入石 - 孔缺陷的无形石墨烯结构的产生将使对碳基材料中的疾病进行受控的探索。原子间电位将应用于大规模的无定形结构,其结果对从经验潜能衍生出的结果进行了标准。通过采用这种方法,我们的研究不仅熟练地导航了与非晶石墨烯的复杂性质相关的计算障碍,而且为无序碳材料中的热特性进行准确,有效地研究了一个新的先例。我们的发现旨在有助于更深入地了解无定形石墨烯中的传热机制,为开发具有量身定制的热特性的高级材料铺平了道路,可用于广泛的应用,从电子设备到储能。
在 WAAM 等 DED 工艺中,计算机辅助制造 (CAM) 系统用于使用计算机辅助设计 (CAD) 数据生成沉积路径。用于加工工艺的通用 CAM 系统输出加工后的三维 (3D) 形状。用于 AM 工艺的商用 CAM 系统也可以在构建过程之后绘制 3D 形状;但是,用户必须手动输入焊珠几何形状,并且估计精度不够高,因为焊珠几何形状取决于各种因素,例如工艺参数、目标形状和位置。在给定上下文中,目标形状是指目标形状是否悬垂的情况(Abe 和 Sasahara,2015 年;Sasahara 等,2009 年),位置对应于熔池在
摘要 飞机水平稳定器容易因气流与机翼分离以及随后尾流对稳定器结构的冲击而发生疲劳损坏,这被称为抖振事件。在本研究中,先前开发的等几何混合壳方法在动态分析环境中重新表述,以使用不同的俯仰角模拟飞机起飞。提出的 Kirchhoff-Love (KL) 和连续壳混合允许使用连续壳对飞机水平稳定器的关键结构部件进行建模,以获得高保真度的 3D 应力,而使用计算效率高的 KL 薄壳对不太重要的部件进行建模。施加的气动载荷是由混合浸入几何和边界拟合的计算流体动力学 (CFD) 分析生成的,以准确记录稳定器外表面上的动态激励。具体来说,为了节省计算量,除了机翼和稳定器之外的整个飞机都浸入基于浸入几何分析 (IMGA) 概念的非边界拟合流体域中,而围绕飞机机翼和稳定器的网格是边界拟合的,以准确计算稳定器上的气动载荷。然后将获得的载荷时间变化应用于水平稳定器的动态混合壳分析,并评估高保真应力响应以进行后续疲劳评估。然后进行简单的频域疲劳分析,以评估稳定器的抖振引起的疲劳损伤。代表性水平稳定器的稳态和动态非线性混合壳分析结果证明了所提方法的数值精度和计算效率。
摘要 飞机水平稳定器容易因气流与机翼分离以及随后其尾流对稳定器结构的冲击而发生疲劳损坏,这被称为抖振事件。在本文中,之前开发的等几何混合壳方法在动态分析设置中被重新制定,以模拟使用不同俯仰角的飞机起飞。所提出的 Kirchhoff-Love (KL) 和连续壳混合允许使用连续壳对飞机水平稳定器的关键结构部件进行建模,以获得高精度 3D 应力,而使用计算效率高的 KL 薄壳对不太重要的部件进行建模。施加的气动载荷由混合浸入几何和边界拟合的计算流体动力学 (CFD) 分析生成,以准确记录稳定器外表面的动态激励。具体来说,为了节省计算量,除了机翼和稳定器之外的整个飞机都浸入基于浸入几何分析 (IMGA) 概念的非边界拟合流体域中,而围绕飞机机翼和稳定器的网格则采用边界拟合,以准确计算稳定器上的气动载荷。然后将获得的载荷时间变化应用于水平稳定器的动态混合壳分析,并评估高保真应力响应以进行后续疲劳评估。然后进行简单的频域疲劳分析,以评估稳定器的抖振引起的疲劳损伤。代表性水平稳定器的稳态和动态非线性混合壳分析结果证明了所提方法的数值精度和计算效率。