根据需要减少上述血液学不良反应的建议,应遵循pH+的儿科患者,所有患有非血液不良反应的患者,如果需要的话,应遵循一级降低剂量。除了肝功能测试异常外,应中断≥3级的pH+儿科患者的非血液学不良反应病例的治疗,并在降低剂量下恢复至≤1级时,并以降低的剂量恢复。对于升高的直接胆红素高于正常机构上限(ULN)的5倍,应中断治疗,直到改善基线或≤1级。对于升高AST/ALT的机构ULN的15倍,应中断治疗,直到改善基线或级<1。如果这些肝功能测试异常在用Sprycel进行治疗后复发,则应降低剂量。
碳纤维(CF)有可能在“结构电池”概念中充当多功能和多功能导电电极。这些电池具有存储电能和携带机械负载的独特能力,而无需额外的电流收集器。但是,在商业化结构电池的道路上仍然存在许多挑战。一个重大的挑战在于基于CF的阴极复合材料的制造过程,包括活性材料对CF表面的粘附不良以及使用危险的有机溶剂,例如N-甲基吡咯酮(NMP)通过传统的叶片涂层。在这项研究中,我们使用电泳沉积(EPD)提出了一种可持续的制造方法,用磷酸锂(LifePo 4)和石墨烯纳米片构建阳性电极复合材料。尤其是乙醇被用作替代NMP的绿色溶剂,以最大程度地减少环境影响。同时,根据系统的比较分析,评估了不同类型的石墨烯添加剂(三种石墨烯纳米片(GNP),四种减少石墨烯(RGO)和一种自制石墨烯)对相对电池性能的影响。在测试的石墨烯添加剂中,基于LFP/RGO2的阳性电极表现出理想的特异性容量为126.2 mAhg -1,即使在2C的苛刻构成下,在500个循环的要求下,也保持了93%以上的保留率。
Arshad,J.,F.M。A. Alzahrani,S。Munir,U。Younis,M。Al-Buriahi,Z。Alrowaili和M. F. Warsi(2023)。 “将2D石墨烯氧化物片与MGFE2O4/ZnO异质结的整合,以改善有机染料和苯甲酸的光催化降解。” 陶瓷国际49(11):18988-19002。Arshad,J.,F.M。A. Alzahrani,S。Munir,U。Younis,M。Al-Buriahi,Z。Alrowaili和M. F. Warsi(2023)。“将2D石墨烯氧化物片与MGFE2O4/ZnO异质结的整合,以改善有机染料和苯甲酸的光催化降解。”陶瓷国际49(11):18988-19002。
本文介绍了一种用于内隔墙的船用夹层板的屈曲分析研究,该夹层板具有多层石墨烯纳米片 (GPL)/聚合物复合面板。芯层考虑了三种不同的形状:方形、蜂窝状和具有负毒比的凹入蜂窝状。假设面板由石墨烯纳米片 (GPL) 增强的聚合物基质组成。使用 Halpin-Tsai 的微机械方法确定顶层和底层的有效杨氏模量以及有效泊松比和质量密度的混合规则。基于新的五阶剪切变形理论对墙夹层板进行建模。采用汉密尔顿原理获得板运动的控制微分方程。所提出的公式和结果的准确性得到了验证,并通过与文献中可用的结果高度一致证明了其准确性。基于我们的结果,我们指出了蜂窝芯的蜂窝结构对船用内墙夹层板临界屈曲载荷的影响。此外,还利用 Galerkin 方法说明了厚度、纵横比、石墨烯纳米片重量分数和几何参数对临界屈曲载荷的影响。这项研究的成果可能有助于创造更高效的工程应用,特别是在海洋和船舶工业中。
在过去十年中,石墨烯因其独特的电气特性(如高电子迁移率和高饱和速度 [1])而备受关注。遗憾的是,由于没有带隙,石墨烯不适合数字电路应用。在模拟 RF 电路中,传统的 MOSFET 结构(如石墨烯场效应晶体管 (GFET))能够达到约 400 GHz 的截止频率 (f T ) [2],但输出特性的非饱和行为 [3] 导致重要 RF 性能指标的下降,因为固有电压增益 A V = g m / g ds 。出于这个原因,最近提出了新的基于石墨烯的晶体管概念,如石墨烯基晶体管 (GBT, [4]),利用通过薄电介质的量子隧穿,如热电子晶体管 (HET, [5])。GBT 由垂直结构组成(图1 中的插图),其中石墨烯片用作控制电极,即基极 (B),位于图1 中的 x = 0 处。基极通过发射极-基极和基极-集电极绝缘体(分别为 EBI 和 BCI)与金属或半导体发射极 (E) 和金属集电极 (C) 隔开 [4]。在正常运行中(即正基极-发射极偏压,V BE > 0 和正集电极-基极偏压,V CB > 0),电子隧穿 EBI,垂直于石墨烯片 (GR) 穿过基极,然后沿着图1 中的 x 方向漂移穿过 BCI 的导带 (CB)。尽管其单原子厚度,
已经考虑了两种不同的模型,即卵烯 (C 32 H 14 ) 和环环烯 (C 54 H 18 ) 及其各自的掺杂模型 (C 31 XH 14 、C 53 XH 18,其中 X = B、Al、N、P、Fe、Ni 和 Pt),用于 GGA-PBE/DNP 级别的 DFT 计算。根据各种计算出的结构参数和电子特性对这两个模型进行了比较。还绘制了电子态密度 (DOS) 光谱,以查看尺寸增加时电子特性的变化。从较小的模型移动到较高的模型时,结构和电子特性没有发生重大变化。发现掺杂保持了表面的平面性,但会引起掺杂原子周围键长发生相对较大的变化,从而削弱键。版权所有 © VBRI Press。关键词:DFT、石墨烯、掺杂、DOS。简介
与纳米科学结合的方法不仅是一个成本效率的过程,而且不会产生严重的环境危害,因此可以将废物管理技术提升到一个新的水平。石墨烯由具有SP 2杂交的石墨的2D单层纸组成。最近,石墨烯已成为各种科学技术的直接应用的新潜在候选者,即,能量转换和能源存储设备,生物成像,药物输送,燃料电池和生物传感器。2 - 5这主要是由于石墨烯的奇妙特性,例如其高电导率,巨大的表面积,轻量级结构以及出色的机械和拉伸强度。6,7此外,石墨烯纳米片中的金属掺杂增强了其潜在应用,尤其是在储能和转换设备,燃料电池,聚合物复合材料以及生物传感应用中的范围内。6 - 8先前,已经引入了各种方法,用于通过物理蒸气沉积(PVD),化学蒸气沉积(CVD),耦合反应,电化学剥落和Hummers方法以及溶剂分析方法以及液化方法的定性生产。8然而,在科学界社区中,使用环保和成本效率的路线的金属掺杂石墨烯纳米片的批量生产仍然是一个挑战。agw是一个不错的选择,可以用作生产金属掺杂石墨烯纳米片的原材料
应用的石墨烯材料PLC AGM使用其知识和专业知识与客户合作,提供定制的石墨烯分散和格式,以为广泛的应用提供增强和收益。该小组的策略是针对三个核心市场的商业应用:涂料,复合材料和聚合物以及功能流体。该小组开发了专有的自下而上过程,这些过程能够使用连续过程产生高体积的石墨烯纳米片。与许多其他石墨烯生产技术不同,制造过程基于可持续的,易于可用的原材料,因此不依赖石墨的供应。应用的石墨烯材料拥有这些过程背后的知识产权和知识。
