特定的电能消耗为(11.5 - 13 kWh/kg SI),进入该工艺的碳材料代表相似的能源贡献。将大约一半的能量保留为Si金属中的化学能。碳足迹范围从4.7 kg CO 2 /kg Si到16千克CO 2 /kg Si),具体取决于该过程中使用的能源的类型(Xiao等,2010;Sævarsdottir等人,2021年)。由碳热过程产生的MG-SI的纯度约为98%和99%。电子级硅(杂质含量<1 ppb)和太阳级硅(杂质含量<1 ppm)用于各种应用,例如在光伏和电子产品中(Suzdaltsev,2022年)。用于从MG-SI生产高纯度硅的常规技术是西门子的工艺,它具有高能量消耗和低生产率(Chigondo,2018),或者使用流体化的床工艺(Arastoopour等,2022年)。另一种方法是Si在熔融盐中的电沉积,预计会产生高纯硅。如果所使用的阳极不耗时并且不产生CO 2,则与常规过程相比,碳足迹可以显着降低,如果用于电解的电力是可续签或核能的。已经证明,具有不同形态学的si膜可以电化学地沉积在不同的熔融盐中,例如氯化物,氟化物和氯化物 - 氟化物(Juzeliu Nas和Fray,2020年)。这些盐中的每一个都有优势和缺点;氯化物熔体是高度水溶性的,但沉积的胶片薄(<10 µm)。同时,沉积在浮力物中沉积的胶片是致密的,但是粘附在沉积物上的盐很难轻易去除。si可以通过将Si源/前体(例如SiO 2,Na 2 Sif 6,K 2 SIF 6和SICL 4)添加到熔融盐中来沉积。Si前体分解为Si(IV)电活性离子,该离子通过基于盐类型的一步或两步减少机制减少。
摘要电池具有高安全性,低成本和合理的能量密度对于网格尺度存储至关重要,并且仍然难以捉摸。在这里,我们报告了使用石榴石型锂离子固体固体电元素,锂阳极和黄铜/Zncl 2 PORTODE的固体电解质液锂/氯化氯化物/氯化锌(卖出涂料/Zncl 2)电池。细胞反应的化学和在排放状态中组装的能力具有很高的安全性。低成本ZNCL 2阴极的使用可以意识到低细胞材料成本为$ 16 kWh 1。采用锂阳极果仁的高理论能量密度为750 WH kg 1和2,250 WH 1。此外,通过将黄铜粉末用作阴极中的锌源,成功解决了Zn颗粒生长问题,并且可以获得电池的良好循环稳定性。作为完整的细胞性能和可伸缩性也可以验证,我们的卖出包装/ZNCL 2电池在网格储能中的实际使用可能很高。
本作品部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为 DE-AC36-08GO28308。资金由美国能源部能源效率和可再生能源办公室太阳能技术办公室提供。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,而出版商在接受文章发表时,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
面等离子体共振,促进了先进传感器的发展。[2,3] 在介电材料上制造的纳米孔阵列——更普遍地说是由亚波长直径的孔组成的规则有序结构——构成了集成二维光子晶体和全介电超表面架构的基础,能够以前所未有的水平限制和操纵光(包括幅度、光谱和空间管理)。[4] 这种等离子体和全介电纳米结构的纳米制造的通常技术方法依赖于各种工具和方法,其中包括聚焦离子束、电子束、光刻、反应离子蚀刻等。[5,6] 这些制造方法成熟且性能高,然而它们速度慢,需要针对所用每种材料进行优化的几个步骤和技术,从而不可避免地增加了整个过程的总成本和复杂性。未来的先进设备现在要求除了利用完美控制的平面纳米图案(在 X 和 Y 维度)之外,还需要利用第三维度(Z)。[7] 特别是,深度至少达到几微米的纳米孔阵列排列可以大大拓宽纳米光子结构的可能设计和功能范围。[7,8] 然而,在材料表面制造具有圆柱形轮廓的如此深的孔的技术具有挑战性。[9–12] 因此,引入一种多功能的制造方法,将孔深度添加为一个直接且独立的自由度,有望形成先进的架构。在此背景下,我们探索超快激光加工作为在参考介电材料熔融石英表面创建深气孔的直接方法。所谓“直接”,是指通过一步工艺制造一个孔,只用一次激光照射即可烧蚀物质,无需任何额外处理(例如化学蚀刻[13]),也无需平移目标材料。[14] 尽管超短脉冲直接激光烧蚀的最终空间分辨率尚未达到足够的性能标准,无法与传统纳米制造工艺相媲美,无法制造功能性纳米光子元件,但我们的目标是表明它代表了一种替代和互补的解决方案,在速度、无掩模和一步工艺、不需要真空环境或化学品方面具有吸引人的优势。此外,纳米结构可以在单个
这篇论文由 TigerPrints 的论文免费提供给您,供您开放访问。它已被 TigerPrints 的授权管理员接受并纳入所有论文。如需更多信息,请联系 kokeefe@clemson.edu。
•从商业设计开始,使用它来定义飞行员规模的系统需要做什么。•> 700°C需要分析蠕变。详细的非弹性分析对于准确性和避免过度保守的限制是必要的。•材料可用性,代码资格,物理数据,焊接知识等。可以约束。•瞬态操作将是挑战。•重新考虑公约
摘要 — 增材制造工艺是第四次工业革命时代先进工程制造工艺的关键之一。熔融沉积成型 (FDM) 和选择性激光烧结 (SLS) 是两种可用于快速成型的增材制造 (AM) 技术。本综述研究证明了熔融沉积成型和选择性激光烧结作为汽车和航空航天可互换零件制造中先进技术开发的可行设备的重要性。本文还讨论了这两台机器对制造技术进步的影响。研究结果证明了熔融沉积成型和选择性激光烧结在制造业中高效和成功生产的巨大益处,以及两者的应用。本文的目的是总结熔融沉积成型和选择性激光烧结作为先进制造技术进步的重要技术工具。研究强调了许多优点和应用,包括耐用性、易用性、更低的生产成本、更短的制造过程交付周期、易于处理复杂的型腔和几何形状、多种高性能、更低的工具成本、生产定制产品以及开发小批量生产、桥梁制造、工程模型、测试和高温应用,以便快速将产品推向市场。
摘要。熔融盐是使用MS功率塔和“直接”存储或使用带有MS“间接”存储的抛物线槽的CSP植物中存储热能的首选选择,使用热油作为太阳能场中的传热油。自2000年以来,已经提出并研究了在线性抛物线槽中使用“直接”储存的传热液。从2001年开始,ENEA在其“太阳热力学”项目中充分发展了这种概念。这样的努力导致建造全尺寸100 m。 2003年的测试工厂在ENEA测试领域,并于2010年由意大利公用事业ENEL(ACHIMEDE)授予5 MW的单位。随着线性菲涅尔技术变得更加成熟,也开始研究这种类型的太阳能收集器,以采用熔融盐作为HTF。意大利公司Sol.in.par专门从事可再生能源工厂,最近决定采用带有熔融盐的菲涅尔技术作为传热液和储存培养基,用于在Partanna(Sicily)开发新的发电厂(SICILY),其中包括5.6 MW e Photovoltaic section和4.26 MW E CSSP部分。由于实际上没有这种类型的植物,因此这种植物将是这种概念的第一个。本文描述了目前在施工阶段的设计和操作主要数据,预计将不晚于2020年春季。
API American Petroleum Institute ASME American Society of Mechanical Engineers BPVC Boiler and pressure vessel code CFD Computational fluid dynamics CPU Central processing unit CSP Concentrating solar power DNI Direct normal irradiance DOE U.S. Department of Energy FEA Finite element analysis FFS Fitness-For-Service FZ Fusion zone GMAW Gas metal arc welding GTAW Gas tungsten arc welding HAZ受热影响区HTF传热液IEA国际能源机构MSPT熔化盐电力塔MW MEGAWATT MW E e MWATT电动电动机MW T型NOX氮氧化物NDA非披露协议NIMS NIMS NIMS NIMS NIMS NIMS NIMS NIMS INSTICE for for National for SRC应力松弛破裂SS不锈钢TES热能存储ys产生强度下标CM累积的AVG平均inv。库存中的库存出口最大最小最小最小