2。数据中心 - 非敏感的数据服务将过渡到基于云的解决方案,这为IT基础架构提供了更大的灵活性和速度。将这些服务转移到基于云的数据中心将减少房地产运营中的范围1和2排放,并指出排放将转移到范围3。3。建筑物改造和优化的操作 - 提高能源效率并减少剩余建筑物的能源需求。项目包括能源管理和监视,建筑管理系统的优化,LED照明升级的升级,HVAC和建筑面料等。并行,密切合作,与创建灵活的工作和研究空间以增加空间利用率的方式。4。热系统的脱碳化 - 用地面或空气源热泵技术或其他电力驱动的系统代替热水和加热系统的燃气锅炉,其中包括Walton Hall校园的集中式热网络。5。可再生能源 - 该计划具有三个组件,通过增加屋顶太阳能光伏系统来增加现场可再生生成,可行性研究,在沃尔顿霍尔校园的大学拥有的土地上安装大规模可再生能源技术系统,最后通过可再生电力购买协议从100%可再生资源中获得100%可再生资源的电力。
鉴于全球能源和气候危机,正在考虑将低碳技术整合到能源系统中,以减轻高能成本和碳足迹。 这些技术及其不同的运营时间表的各种可用能力,效率和投资成本可以解锁脱碳的多种途径。 本文为公共医疗机构提供了一个优化框架,以确定网站能源系统的最佳操作时间表。 对低碳发电,转换和能源存储技术的详细技术分析,可以根据实际历史数据将其纳入系统中。 结果表明,容量为1800 kW的热泵可以在现场替换燃气锅炉,以满足热量需求,同时在5年内收回投资,并与基本案例相比,可在5年内恢复投资,并提供22.47%的运营和碳成本。 分析表明,高气价期间有利用更电气的操作方式,从而使电能量存储比热能存储更具吸引力。 在处理真实数据时,优化算法通过考虑其碳的影响,以将常规能源供应与清洁能源区分开,从而以智能且环保的方式最大程度地减少能源费用。 优化算法和随后的技术经济分析为决策者提供了一个全面的框架,以促进能源投资决策。鉴于全球能源和气候危机,正在考虑将低碳技术整合到能源系统中,以减轻高能成本和碳足迹。这些技术及其不同的运营时间表的各种可用能力,效率和投资成本可以解锁脱碳的多种途径。本文为公共医疗机构提供了一个优化框架,以确定网站能源系统的最佳操作时间表。对低碳发电,转换和能源存储技术的详细技术分析,可以根据实际历史数据将其纳入系统中。结果表明,容量为1800 kW的热泵可以在现场替换燃气锅炉,以满足热量需求,同时在5年内收回投资,并与基本案例相比,可在5年内恢复投资,并提供22.47%的运营和碳成本。分析表明,高气价期间有利用更电气的操作方式,从而使电能量存储比热能存储更具吸引力。在处理真实数据时,优化算法通过考虑其碳的影响,以将常规能源供应与清洁能源区分开,从而以智能且环保的方式最大程度地减少能源费用。优化算法和随后的技术经济分析为决策者提供了一个全面的框架,以促进能源投资决策。该框架可以基于能源系统的短期和长期目标,可视化设备寿命的财务收益的演变,并了解整合可再生能源的环境影响。
欧盟制定了雄心勃勃的 2050 年碳中和目标。这一转变必须逐步进行,以避免巨额投资;因此,必须从经济和环境两个角度妥善执行能源供应系统的中期能源规划。部门耦合措施有助于实现这一雄心勃勃的目标,尽管它们需要大量的资金投入。本文介绍了一种创新方法,用于位于意大利的马尔凯理工大学校园的中期能源规划,以实现碳中和,即从金融投资角度减少 50% 的碳排放。大学校园是一个多载体的本地能源社区,拥有光伏、热电联产、燃气锅炉、吸收和电制冷机等多种技术,可满足最终用户的能源需求。通过 Calliope 框架研究了不同的已安装和新技术组合(例如,储能或氢气)。案例研究展示了典型年度规划的经济最优情景,保证同样减少 50% 的碳排放。结果强调了利用多家运营商之间的协同作用的重要性,以及 i)可再生能源(例如,额外安装 3.3 MW 的光伏发电)、ii)容量为 7 MWh 的电池和 (iii) 行业耦合技术的重要作用。
由于全球变暖导致化石燃料的使用引起全球气候变化,大多数国家都致力于通过应用可再生能源减少温室气体排放。由于分布式和季节性供暖需求,供暖脱碳更具挑战性,特别是对于冬季寒冷的国家。电动热泵被认为是供暖行业脱碳的一个有吸引力的解决方案。由于电网供电的热泵可能会显著增加电网的电力需求,本文考虑使用本地可再生能源为热泵提供电力,这被称为电网独立的可再生供暖系统,包括光伏、风力涡轮机、电池储能系统和热能储存。本文研究了一个完整的可再生供暖系统 (RHS) 框架并确定了组件的尺寸以实现建筑供暖脱碳。分析了相应可再生组件安装容量下天然气消耗的减少与电池储能系统 (BSS) 要求之间的关系及其技术要求。然后,根据不同的投资方案,本文使用粒子群优化算法对 RHS 中每个组件进行优化尺寸计算,以找到最小化 CO 2 排放的解决方案。结果验证了具有最优尺寸的 RHS 可以最小化 CO 2 排放并降低天然气的运营成本。这项工作为如何投资 RHS 以取代现有的基于燃气锅炉和热电联产的供热系统提供了一种可行的解决方案。
位于蒙特勒伊勒加斯特 (伊勒-维莱讷省) 的 EARL de La Janaie 以其品牌“Le P'tit Gallo”而闻名,甲烷不再从泥浆池中逸出。现在的价值是将农场的电费减少三分之一。十年前,伊夫和父母一起经营有机奶牛场。随后,他开始了酸奶形式的加工活动。最初为其分配了 10,000 升。目前,其产量的 90%(400,000 升)是在现场加工的。该农场在 94 公顷的 UAA 上雇佣了 12 名员工,饲养了 80 头奶牛,这些奶牛均由土地喂养。Yves 将自治放在首位。它的目标是靠近它以获取转化实验室所需的能量。因此,他今年安装了 650 平方米的太阳能电池板和一台 Nénufar 微甲烷化装置。沼气回收 Nénufar 工艺包括覆盖现有的泥浆池。主要兴趣是沼气的回收。通常情况下,产生的甲烷会被释放到大气中,并充当温室气体。在这里,它被捕获并输送到燃气锅炉。它安装在由 Nénufar 装配的容器中,配备部分燃烧器-
摘要:太阳能热能是当今建筑行业最热门的话题之一,它是一种有价值的供暖能源,可以降低能源消耗。由于太阳能电池板在白天产生热量,而消费者全天都需要加热,因此我们使用备用水箱(用于生活热水)和缓冲水箱(用于加热)进行储存。最新的发展提高了效率和使用寿命,同时减少了水箱的体积。因此,本研究工作涉及分析家庭住宅中的太阳能热能。这项工作提出了一种创建决策支持系统的方法,用于从经济、技术、可用性和环境角度比较房屋中的太阳能系统。计算了考虑层次分析法而选择的标准的权重。总结了能量生产计算所需的参数(位置、温度等)和能量消耗(居民、室外温度等)。可以说,不存在通用的最佳太阳能热方案,因为能量消耗取决于其他特征和限制以及能量生产、位置的地理纬度等。根据结果,方案 3(燃气锅炉和组合式储罐)是减少所需能源、减少二氧化碳排放、实现最佳装置能源效率和最低传输损耗的最佳方案。在其他经济标准不那么相关的场景中,这应该是优先方案中的最佳方案。
与基线排放计算有关的其他详细信息。截至2023年3月31日的财政年度是其基准年。应该注意的是,这一时期是在ITS US实施混合型工作时的Covid-19大流行之后。因此,能源消耗和员工通勤已经大大降低。范围1由于ITSUS业务运营的性质(不包括任何公司拥有的车辆或燃气锅炉),我们不会产生任何范围1排放。范围2与我们办公室消耗的电力和水有关的统计数据是从公用事业账单中获得的。范围3商务旅行排放是根据员工费用记录(里程和收据)计算得出的。员工通勤数据是使用我们每个员工在基线期间使用的距离和典型运输形式的合理估计来计算的。每个员工每年从我们的办公室工作的平均天数已纳入此计算中。ITSUS购买的产品的上游运输是根据为我们的办公室购买的“非转售”设备计算的。使用从分销商到客户Delivery网站的距离,已经按照合同计算了ITSUS通过增值转售的产品的下游运输。ITSUS主要是专业服务提供商,并且不生产任何物理产品,并且在运营其运营过程中不会产生任何废物或废水排放(员工浪费除外,这并不符合报告的范围)。
v) 背景 热网能够为城市提供供暖和热水。建筑物中的供暖和热水约占英国温室气体排放量的三分之一。燃气锅炉目前占英国供暖市场的 80% 以上。政府预测,到 2050 年,英国至少 18% 的建筑存量将连接到热网。1 议会于 2019 年宣布气候紧急状态。议会的《2021-26 年气候变化战略》分享了剑桥到 2030 年实现净零碳排放的愿景。议会的战略列出了六个关键目标,说明如何应对气候变化的原因和后果,包括减少市议会建筑物的碳排放以及减少剑桥住宅和建筑物的能源消耗和碳排放。初步研究结果表明,在剑桥市中心建立 100% 可再生和零碳热网是可行的,这将为市中心提供环保的供暖和热水。随着时间的推移,这可以扩展到整个剑桥,创建一个城市规模的热网。剑桥市中心热网创造了一个独特的机会,将协作系统思维和清洁技术创新结合在一起,其整体影响远远大于各部分的总和。它可以向国际观众展示剑桥的经济、环境和社会可持续性,为如何将一座历史名城改造成真正可持续的低碳城市中心提供实际示范。剑桥具备成功热网的要素:
1。合并 - 自大流行以来,OU已经采用了动态混合工作实践。这显着减少了建筑物和空间利用率的职业。目前正在进行审查以巩固空间,以反映教职员工和专业单位的未来需求和工作实践。遗产的合并将大大减少OU的范围1和2排放。2。数据中心 - 非敏感的数据服务将过渡到基于云的解决方案,这为IT基础架构提供了更大的灵活性和速度。将这些服务转移到基于云的数据中心将减少房地产运营中的范围1和2排放,并指出排放将转移到范围3。3。建筑物改造和优化的操作 - 提高能源效率并减少其余建筑物的能源需求。项目包括能源管理和监视,建筑管理系统的优化,LED照明升级的升级,HVAC和建筑面料等。并行,密切合作,与创建灵活的工作和研究空间以增加空间利用率的方式。4。热系统的脱碳化 - 用地面或空气源热泵技术或其他电力驱动的系统代替热水和加热系统的燃气锅炉,其中包括Walton Hall校园的集中式热网络。5。可再生能源 - 该计划具有三个组件,通过增加屋顶太阳能光伏系统来增加现场可再生生成,可行性研究,在沃尔顿霍尔校园的大学拥有的土地上安装大规模可再生能源技术系统,最后通过可再生电力购买协议从100%可再生资源中获得100%可再生资源的电力。
摘要。通过整合电力和热力基础设施,可以有效地管理可再生能源发电造成的电网拥堵,后者以大型区域供热 (DH) 网络为代表,通常由大型热电联产 (CHP) 电厂供电。热电联产电厂可以通过调整热能和电能之间的比率,在电力市场上出售电力,从而进一步提高区域供热多公用事业的利润率。后者只适用于某些热电联产电厂,这些电厂允许将两种商品的发电分离,即由两个独立变量(自由度)提供的发电,或通过将它们与热能存储和电转热 (P2H) 单元集成。因此,热电联产单元可以帮助电网的拥堵管理。引入了一个详细的混合整数线性规划 (MILP) 优化模型,用于解决综合电力和热力基础设施的网络约束单元承诺问题。所开发的模型包含热电联产单元(即热能和电能)的有用效应的详细描述,这些效应是一两个独立变量的函数。无损直流流近似模拟电力传输网络。区域供热模型包括使用燃气锅炉、电锅炉和热能储存。对 IEEE 24 总线系统进行的研究强调了全面分析多能源系统的重要性,以利用电力和热力部门联合运行带来的灵活性并管理电网拥堵。
