Armor 热水器 - 工作原理... 1. 不锈钢热交换器 允许水流过专门设计的线圈以实现最大热传递,同时提供对烟气腐蚀的保护。线圈包裹在包含燃烧过程的夹套中。 2. 燃烧室检修盖 允许进入热交换器线圈的燃烧侧。 3. 鼓风机 鼓风机通过文丘里管(项目 5)吸入空气和燃气。空气和燃气在鼓风机内部混合,并被推入燃烧器,在燃烧室内燃烧。 4. 燃气阀 燃气阀感应鼓风机产生的负压,仅当燃气阀通电且燃烧空气流动时才允许燃气流动。 5. 文丘里管 文丘里管控制进入燃烧器的空气和燃气流量。 6. 烟气传感器(极限额定值,未显示) 该传感器监测烟气出口温度。如果烟气温度过高,控制模块将调节并关闭热水器。这可防止烟道过热。 7. 热水器出口温度传感器(与高限传感器一起安装) 该传感器监测热水器出口水温(系统供水)。如果选择作为控制传感器,控制模块会调整热水器燃烧率,以使出口温度正确。 8. 热水器入口温度传感器 该传感器监测回水温度(系统回水)。如果选择作为控制传感器,控制模块会调整
摘要目的是研究COVID-199疫苗接种对靶向疗法对类风湿关节炎(RA)和银屑病关节炎(PSA)患者疾病活性的影响。患者和方法1765疫苗接种的患者COVID-19,1178(66.7%),RA和587(33.3%)的COVID-19注册中心的PSA包括风湿病患者(COVIDSER)项目的PSA。人口统计学,疾病特征,疾病活性评分在28个关节(DAS28)和有针对性的治疗中。分别通过对数线性回归和应急分析分析了基于DIV> DIV> DIV>基于DAS28的耀斑率和分类的疾病活动分布和疫苗接种后的疫苗接种。使用随机系数模型评估了疫苗接种对DAS28变异作为连续度量的影响。结果,疫苗接种并未显着改变分类的疾病活动和耀斑率的分布。对数线性回归显示在疫苗接种后的6个月期间,与疫苗接种前的同期相比,在疫苗接种前的6个月后,燃烧率没有显着变化。使用随机系数模型分析DAS28变异时,两组患者在疫苗接种后未检测到疾病活性的显着差异。然而,用Janus激酶抑制剂(JAK-I)(1)和白介素-6抑制剂(IL-6-I)治疗的RA患者的疾病活性恶化恶化(1.436±0.531,p = 0.007,p = 0.007,和1.201±0.550,p = 0.550,p = 0.029),在TUMOR中,与TUMOR相比, (TNF-I)。同样,与用TNF-I治疗的患者相比,用白介素12/23抑制剂治疗的PSA患者(IL-12/23-1)患者的疾病活性恶化(4.476±1.906,p = 0.019)。
图 3.4.1-1:虚拟喷嘴配置 17 图 3.4.1-2:液压油理论排放速度 19 图 3.4.1-3:喷火热释放率 20 图 3.4.1-4:喷火火焰长度 21 图 3.4.1-5:喷火火焰发射功率 22 图 3.4.1:火焰与目标平面之间的关系 23 图 3.4.1-6:距喷射火焰 0.50 米处垂直平面的辐射热通量 24 图 3.4.1-7:距喷射火焰 0.75 米处垂直平面的辐射热通量 24 图 3.4.1-8:距喷射火焰 1.00 米处垂直平面的辐射热通量 25 图 3.4.1-9:距喷射火焰 2.00 米处垂直平面的辐射热通量m 距离喷射火焰 25 图 3.4.1-10: 距离喷射火焰 4.00 m 处垂直平面的辐射热通量 26 图 3.4.1-11: 距离喷射火焰 6.00 m 处垂直平面的辐射热通量 26 图 3.4.1-12: 距离喷射火焰 10.00 m 处垂直平面的辐射热通量 27 图 3.4.1-13: 目标热通量与距离 27 图 3.4.2-1: 预测热释放率与池直径 30 图 3.4.2-2: 池火每单位表面积质量燃烧率 31 图 3.4.2-3: 池火增长至峰值热释放率的时间 32 图 3.4.2-4: 池火火焰高度 33 图 3.4.2.1-1: 距离垂直平面 5.5 m 处的辐射热通量来自 JP-4 池火 35 图 3.4.2.1-2: 辐射热通量至垂直平面 5.75 米 来自 JP-4 池火 35 图 3.4.2.1-3: 辐射热通量至垂直平面 6.0 米 来自 JP-4 池火 36 图 3.4.2.1-4: 辐射热通量至垂直平面 8.0 米 来自 JP-4 池火 36 图 3.4.2.1-5: 辐射热通量至垂直平面 10.0 米 来自 JP-4 池火 37 图 3.4.2.1-6: 辐射热通量至垂直平面 15.0 米 来自 JP-4 池火 37 图 3.4.2.1-7: 辐射热通量至垂直平面 20.0 米 来自 JP-4 池火 38 图 4.1-1: 火灾热量释放速率 41 图 4.1-2:隔间气体层温度 42 图 4.1-3:层界面高度 42 图 4.1-4:目标辐射热通量 43 图 4.1-5:目标热通量与离火距离的关系 43 图 4.2.1-1:热释放速率随隔间尺寸变化 44 图 4.2.1-2:不同隔间尺寸的层温度 45 图 4.2.1-3:15x15 米垂直目标隔间的热通量 46 图 4.2.1-4:5x5 米垂直目标隔间的热通量 46 图 4.2.2-1:不同火势大小的对流热释放速率 47 图 4.2.2-2:不同火势大小的辐射热释放速率 47 图 4.2.2-3:稳态热释放速率与火灾直径 48 图 4.2.2-4:不同火灾大小的上层温度 48 图 4.2.2-5:不同火灾大小的下层温度 49 图 4.2.2-6:稳定状态层温度与火灾直径 49 图 4.2.2-7:2.5 米直径火灾的目标热通量 50 图 4.2.2-8:2.0 米直径火灾的目标通量 51 图 4.2.2-9:1.5 米直径火焰的目标通量 51