Johnny Lam是FDA生物制品评估与研究中心的治疗产品办公室的生物医学工程师,在那里他既有铅产品审查和研究活动。Johnny的主要研究兴趣涉及研究基于复杂的细胞疗法以及其产品质量如何与功能相关的生物活性相关。他的研究着重于广泛的微生理系统的开发和适应,作为评估各种细胞类型的各种功能结果的平台,以提高制成细胞产品的质量和效力。Johnny获得了博士学位。在2015年的赖斯大学(Rice University)的生物工程中,他在那里开发并评估了可注射的多层水凝胶复合材料,用于细胞和受控生长因子递送,用于体内骨科组织修复。Johnny获得了博士学位。在2015年的赖斯大学(Rice University)的生物工程中,他在那里开发并评估了可注射的多层水凝胶复合材料,用于细胞和受控生长因子递送,用于体内骨科组织修复。
©2024作者。本文根据创意共享4.0国际许可,允许以任何中等或格式的使用,共享,适应,分发和复制,因为您将适当的信用归功于原始作者和这些作者,并提供了与创意共享许可证的链接,并指出了IFCHANGES的链接。本文章中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果本文的创意共享许可中不包含材料,并且您的预期使用不受法定法规的允许或超过允许的使用权,则您需要直接从版权所有的人获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
在生理相关的水凝胶中的工程脉管网络是由于细胞– Bioink相互作用以及随后的水凝胶设备接口而成的。在这里,提出了一种新的细胞友好制造策略,以实现支持集成在微流体芯片中的共培养的灌注多凝胶脉管模型。该系统包含两个不同的水凝胶,以特定支持为血管模型选择的两种不同细胞类型的生长和增殖。首先,通过微流体设备内的两光聚合聚合(2pp),通道以明胶的墨水印刷。然后,注入人类肺纤维细胞纤维纤维水凝胶以包围印刷网络。最后,人体内皮细胞被播种在印刷通道内。打印参数和纤维纤维组合物进行了优化,以减少水凝胶肿胀,并确保可以用细胞介质灌注的稳定模型。以两个步骤制造水凝胶结构可确保没有细胞暴露于细胞毒性制造过程,同时仍获得高纤维打印。在这项工作中,在定制制造的灌注系统上成功证明了通过3D印刷的SCA旧和共培养模型的灌注来指导内皮细胞入侵的可能性。
稳定、可重复、可扩展、可寻址和可控的混合超导体-半导体 (S-Sm) 结和开关是门控量子处理器的关键电路元件和构建块。分离栅电压产生的静电场效应有助于实现纳米开关,这些纳米开关可以控制基于二维半导体电子系统的混合 S-Sm 电路中的电导或电流。这里,通过实验展示了一种新颖的大规模可扩展、栅极电压可控的混合场效应量子芯片的实现。每个芯片都包含分离栅场效应混合结阵列,它们用作电导开关,由与 Nb 超导电子电路集成的 In 0.75 Ga 0.25 As 量子阱制成。芯片中的每个混合结都可以通过其相应的源漏极和两个全局分离栅接触垫进行控制和寻址,从而允许在其 (超) 导电和绝缘状态之间切换。总共制造了 18 个量子芯片,其中有 144 个场效应混合 Nb-In 0.75 Ga 0.25 As 2DEG-Nb 量子线,并研究了低温下多个器件的电响应、开关电压(开/关)统计、量子产率和可重复性。提出的集成量子器件架构允许控制芯片上大型阵列中的单个结,这对于新兴的低温量子技术非常有用。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
完全集成的量子计算架构 • >8-16 倍更高的复用率,消除了开销 • 内置错误校正 • 降低 1,000 倍的能量和热量耗散 • >10 倍更快的时钟速度 + 更低的延迟 • 降低 128 倍的控制脉冲复杂度 • 超导制造商业化就绪 • 系统组件便宜 400 倍
摘要 硅芯片上的人工神经元的发明是教育技术的一大进步。这些人工神经元的灵感来自人脑的工作方式,已被开发用于执行一系列可用于教学的功能。这些硅基神经元旨在帮助可视化和理解复杂的神经过程,使其成为教育工作者和学生的宝贵工具。它们通过建模和模拟大脑网络为进一步研究神经科学和认知科学提供了独特的机会。此外,这些合成神经元可用于为各种教学应用创建特定模型。这一突破为更深入地研究神经网络铺平了道路。关键词-硅芯片上的神经网络、人工智能、人脑、神经元建模、硅制成的神经元、具有神经形态特性的硬件、硅神经元芯片的实现。
©2023作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
超导纳米线单光子探测器(SNSPD)在不同基底和光子结构上的混合集成在开发基于单光子探测的复杂光子器件方面具有巨大潜力,例如用于单光子级微弱光光谱传感的光子计数重构光谱仪。本文引入SNSPD的级联吸收效应来开发光子计数重构光谱仪。该装置包括作为空间色散元件的罗兰光栅和位于光栅聚焦区域的定制级联SNSPD阵列。SNSPD的光谱响应可以通过其螺旋图案和阵列中的级联吸收进行灵活调制,并以此作为光谱重构的基础。设计和制作了一个原型装置来演示该方案的原理。实验结果表明了通过螺旋图案设计和SNSPD阵列的级联吸收效应调制光谱响应的可行性。它支持波长范围为1,495至1,515 nm的光谱测量和重构,光谱分辨率为0.4 nm。该方案仅通过SNSPD的设计就实现了光谱重构的基础,而无需额外光子结构的光谱调制效应。它为开发高光子利用率的器件提供了一种有趣且有前途的方法。
摘要:渐变折射率透镜中的等离子体片上聚焦对于深亚波长纳米级的成像、光刻、信号处理和光互连具有重要意义。然而,由于等离子体材料固有的强波长色散,等离子体片上聚焦存在严重的色差。利用成熟的平面介质光栅,提出了一种渐变折射率波导阵列透镜(GIWAL),以支持声学石墨烯等离子体极化激元(AGPP)的激发和传播,并实现 AGPP 在 10 至 20 THz 频带内焦点小至约工作波长的 2% 的消色差片上聚焦,得益于 GIWAL 与波长无关的折射率分布。提出了一种理论分析方法,以理解 AGPP 的片上聚焦以及其他光束演化行为,例如高斯光束的自聚焦、自准直和钟摆效应以及数字光信号的空间反转。此外,还展示了 GIWAL 反转空间宽带数字光信号的可能性,表明了 GIWAL 在宽带数字通信和信号处理中的潜在价值。