电磁辐射是太空中丰富的能源,可为行星际和恒星际任务提供温和而持久的推力。微型激光和太阳能推进平台的早期成功证实了它们在近地和深空探索中的潜力,尽管实际实现可靠的光子设备并非易事。出于对太空探索的兴趣,本简短报告概述了这一新兴领域的最新成就。我们重点介绍了几种通过光子-物质相互作用产生推力的光致机制,例如光子压力和烧蚀、光梯度力、光诱导电子发射等,这些机制可能会对太空推进产生技术影响。最后,我们概述了这些机制在实际应用中面临的一些关键挑战和可能的解决方案,并提出了光子推进领域未来发展的分类和指导原则。
摘要:基于密度功能理论(DFT)和波函数分析,紫外和可见的分光光度计(UV-VIS)光谱和1-Meso的Raman光谱以及通过手性纳米矩阵的手性分离获得的1-Meso和1-RAC。通过过渡密度矩阵(TDM)和电荷密度差(CDD)图研究了1-MESO和1-RAC的电子激发特性。基于基于赫希菲尔德分区(IGMH)的非独立梯度模型,讨论了分子间相互作用。使用静电电势(ESP)研究了1-MESO和1-RAC与外部环境的相互作用,并根据外部磁场下的磁诱导电流研究了1-MESO和1-RAC的电子定位度。通过1-RAC的手性分离,两个对映异构体,1-(p,p)和1-(m,m)。通过分析1-Meso,1-Meso,1-(P,P)和1-(P)和1-(M,M),过渡电动偶极矩(TEDM)和过渡磁性二极管矩(TMDM)的电子圆二色(ECD)光谱来揭示分子的电磁相互作用。发现,由于结构的反转,1-(p,p)和1-(m,m)具有相反的手性特性。
皮质回路中的计算在高级脑功能中起着根本性的作用。最近的技术进步极大地促进了对细胞类型特异性皮质突触回路的结构和连接及其在小鼠执行简单的目标导向感觉知觉任务中的功能的定量描述。对皮质回路如何处理感觉信息的机制理解需要详细的生物物理计算建模,从而需要越来越精确的数据。通过对结构、功能和模拟的综合研究,神经科学家现在能够研究皮质计算的因果机制。研究神经回路结构与功能关系的一个关键模型系统是小鼠桶状皮质,它处理来自鼻子 1 周围的胡须阵列的触觉感觉信息(图 1A)。自 1970 年 Thomas Woolsey 和 Hendrik van der Loos 发现桶状皮层以来,对其进行了 50 年的研究。2 我们在此讨论桶状皮层电路的结构、功能和模拟的未来研究途径,需要将这些研究途径整合起来,以建立行为结构与功能关系的因果关系。
摘要 内质网 (ER) 驻留蛋白 TANGO1 在 ER 出口位点 (ERES) 周围组装成一个环,并将 ER 腔内的前胶原与细胞质中的 COPII 机制、系绳和 ER-Golgi 中间区室 (ERGIC) 连接起来 (Raote 等人,2018)。在这里,我们提出了一种理论方法来研究 TANGO1 环组装的物理机制以及 COPII 聚合、膜张力和力如何促进前胶原输出的运输中间体的形成。我们的结果表明,TANGO1 环通过充当 linactant 来稳定新生 COPII 芽的开放颈部。然后通过两种互补机制促进这种芽伸长成与大块前胶原相称的运输中间体:(i) 通过缓解膜张力,可能是通过 TANGO1 介导的逆向 ERGIC 膜融合和 (ii) 通过施加力。总之,我们的理论方法确定了 TANGO1 驱动的前胶原输出中的关键生物物理事件。