形状通常旨在满足结构的适当状态,并在物理世界中提供特定的功能。不幸的是,大多数现有的生成模型主要是基于几何或视觉合理性,而无视物理或结构约束。为了补救这一点,我们提出了一种新颖的方法,旨在赋予深层生成模型的物理推理。特别是我们引入了一个损失和学习框架,该框架促进了生成形状的两个关键特征:它们的连通性和身体稳定性。前者确保每个产生的形状由单个连接的组件组成,而后者则在受重力时促进该形状的稳定性。我们提出的身体损失是完全不同的,我们证明了它们在端到端学习中的使用。至关重要的是,我们可以证明可以实现此类物理目标,而无需牺牲模型的表达能力和生成结果的可变性。我们通过与状态的深层生成模型,我们所提出的方法的效用和效率进行了广泛的比较,同时避免了训练时可能昂贵的可分化物理模拟。
摘要 - 量词计算已被广泛应用于各个领域,例如量子物理模拟,量子机学习和大数据分析。然而,在数据驱动范式的领域中,如何确保数据库的隐私正在成为至关重要的问题。对于古典计算,我们可以通过手动添加噪声来结合差异隐私(DP)的概念,以满足隐私保存标准。在量子计算方案中,研究人员通过考虑量子噪声将经典DP扩展到量子差异隐私(QDP)。在本文中,我们提出了一种新颖的方法来满足QDP定义,通过考虑投影操作员测量产生的错误,该错误表示为射击声。然后,我们讨论可以通过镜头噪声实现的隐私预算数量,这是保护隐私保护水平的指标。此外,我们在量子电路中提供了带动噪声的量子噪声的QDP。通过数值模拟,我们表明射击噪声可以有效地提供量子计算中的隐私保护。索引术语 - Quantum计算,差异隐私,投影操作员测量
我们提出了Mujoco Manipulus,这是一种由Mujoco物理模拟引擎提供动力的新型开源基准测试,旨在加速机器人学习的进步以进行工具操作。我们的基准包括用于操纵工具的各种任务 - 该领域目前缺乏统一的基准。不同的研究小组依赖于定制设计的任务或封闭式设置,从而限制了交叉可靠性并阻碍了该领域的重大进展。为此,我们的基准提供了16个具有挑战性的工具操纵任务,包括倒入,sc sc,刮擦,堆叠,聚集,锤击,迷你高尔夫球和乒乓球的变体。基准测试支持基于州立和基于视觉的观察空间,与体育馆API完全集成,并与广泛使用的深入强化学习库相连,以确保社区轻松采用。我们在基准上进行了广泛的强化学习实验,我们的结果表明,对于培训工具操纵策略,要取得进展。可以在我们的匿名项目网站:mujoco-manipulus.github.io上找到我们的代码库和其他学识的策略的其他视频。
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
简介 多臂老虎机 (MAB) 模型是强化学习中最基本的设置之一。这个简单的场景捕捉到了诸如探索和利用之间的权衡等关键问题。此外,它还广泛应用于运筹学、机制设计和统计学等领域。多臂老虎机的一个基本挑战是最佳臂识别问题,其目标是有效地识别出具有最大预期回报的臂。这个问题抓住了实际情况中的一个常见困难,即以单位成本只能获得有关感兴趣系统的部分信息。一个现实世界的例子是推荐系统,其目标是找到对用户有吸引力的商品。对于每个推荐,只会获得对推荐商品的反馈。在机器学习的背景下,最佳臂识别可以被视为主动学习的高级抽象和核心组件,其目标是尽量减少底层概念的不确定性,并且每个步骤仅显示被查询的数据点的标签。量子计算是一种有前途的技术,可能应用于密码分析、优化和量子物理模拟等不同领域。最近,量子计算设备已被证明在特定方面的表现优于传统计算机
这项研究介绍了用于Covid-19检测的生物传感器的设计和分析,将石墨烯元面积与金,银和GST材料整合在一起。所提出的传感器架构将平方环谐振器与圆环谐振器结合在一起,并通过红外制度中的Comsol多物理模拟进行了优化。传感器表现出非凡的性能特征,在初级检测带(4.2-4.6μm)中的吸收值超过99.5%,次级带(5.0-5.5μm)中的吸收值约为97.5%。该设备表现出高灵敏度(4000 nm/riU),检测极限为0.078,优点为16.000riu⁻时,当利用晶体GST作为底物材料时。通过使用XGBoost回归的机器学习优化,传感器的性能得到了进一步提高,从而在各种操作参数之间实现了预测和实验值之间的完美相关性(R²= 100%)。双波段检测机制,结合了高级材料和机器学习优化的整合,为快速,无标签和高度敏感的COVID-19检测提供了有前途的平台。这项研究有助于开发用于病毒检测和疾病诊断的下一代生物传感技术。
导入机器人URDF(United Robotics描述格式)文件,对于设置机器人模型必不可少。自动配置模块简化了配置RL参数和设置的过程,以确保为导入的机器人模型正确设置训练和仿真模块。该模块均馈入RL训练模块(支持PPO和SAC等算法)和仿真模块(由Physx提供支持),从而可以进行机器人模型的有效训练和物理模拟。SIM2REAL模块可以通过以太网将电动机命令发送到真实的机器人以进行现实世界实现,从而有助于确保可以轻松地将训练有素的策略部署在物理机器人中。此外,我们开发了一种状态对齐工具,该工具可以实时比较实际机器人和仿真模型之间的状态,从而促进了真实机器人状态与模拟中的模拟态度的一致性,以迅速迁移受过训练的行为。在线学习模块代表了一项新颖的努力,结合了SIM2REAL通信和RL训练模块,以利用现实世界中的机器人运动数据进行培训,从而克服了Sim2real的差异。
数字技术改变了人类的行为,尤其是产品的特性及其与界面和交互相关的功能。智能手机用户不得不接受触摸屏界面,但没有足够的证据表明这些数字界面比物理模拟界面更有效。此外,智能手机游戏行业推出了带有触摸界面的手机游戏,这些游戏对游戏用户来说可能有效,也可能无效。本研究旨在通过两项可用性测试,为智能手机游戏控制的模拟和数字界面之间的有效性寻找实证证据:(a)一项初步研究,比较六名参与者的直接和间接输入控制之间的数据值;(b)一项主要研究,从初步研究的结果中调查数字和模拟输入控制之间仅点击提供的影响。定性和定量研究方法都用于分析可用性测试。共有 81 名参与者参加了主要研究,并分为两大组,比较单手和双手输入控制。每组九名参与者玩基于不同输入控制任务的智能手机游戏。本研究发现,直接触摸屏交互对于双手输入控制任务更有效,而间接物理输入控制对于单手输入控制任务更有效。
大脑的神经活动与身体的动力学密切相关。然而,我们的分层传感器系统如何动态地编排身体运动的产生,同时适应传入的感觉信息尚不清楚(1-4)。在小鼠中,整个电动机(M1)和一级感觉前肢(S1)皮质的编码程度以及在学习过程中如何形状的肌肉水平特征是未知的。为了解决这个问题,我们建立了一种新型的50肌肉模型,用于在物理模拟环境中研究运动控制和学习。我们表明,我们可以通过求解逆动力学并得出驱动相同动作的感觉运动控制模型来模仿在操纵杆任务中收集的3D四肢运动学。使用来自我们模型的内部计算,我们发现第2/3 M1和S1神经元的种群编码高级位置,以及下层的肌肉空间和前视性动力学。在自适应学习过程中,这些功能上不同的神经元映射到特定的计算基序。引人注目的是,S1神经元更突出地编码感觉运动预测错误。此外,我们发现在本课内学习期间,神经潜在动态在S1和M1中有所改变。一起,我们的结果提供了一个新的模型,讲述了皮质中神经动力学如何实现自适应学习。
AI生成的内容的最新进展显着改善了3D和4D代的现实主义。然而,大多数现有的方法都在忽略非衍生的物理原理的同时,会导致伪像,例如不切实际的变形,不稳定的动态和不可行的对象相互作用。将物理学培训纳入生成模型,这是一个至关重要的研究方向,可以增强结构完整性和运动现实主义。这项调查对物理感知的生成甲基产生进行了综述,从而系统地分析了如何将物理结构整合到3D和4D代中。首先,我们研究了将物理先验纳入静态和动态3D代理的最新作品,基于代表类型的方法对方法进行了分类,包括基于视觉的,基于NERF和基于高斯分裂的方法。第二,我们探索了4D代的新兴技术,重点是用物理模拟对时间动态进行建模的方法。最后,我们对主要方法进行了比较分析,强调了它们的优势,局限性和对不同材料和运动动态的适用性。通过对物理接地AIGC进行深入分析,该调查旨在弥合生成模型和物理现实主义之间的差距,提供见解,以激发人们在物理上一致的内容生成中的未来研究。