Morgan Advanced Materials PLC 在英格兰和威尔士注册,地址为 Quadrant, 55-57 High Street, Windsor, Berkshire SL4 1LP UK 公司编号。286773 © 版权所有,Morgan Advanced Materials PLC 及其附属公司,2013 年。保留所有权利。
颜色 白色 体积密度(烧成) 3.74 Mg/m 3 颗粒大小 14 m 孔隙率(表观) 0%(全致密)% 标称 维氏硬度 12.8 GPa @ Hv 0.5kg 抗压强度 2000 MPa 弯曲强度(3 点)@20C 280 MPa 杨氏模量@20C 330 GPa 断裂韧性,MPa.m ½ 3.5 热导率 24 W/mK @20C 热膨胀系数
声明和免责声明 D-Wave Quantum Inc. (D-Wave)、其子公司和附属公司尽商业上合理的努力确保本文档中的信息准确且最新,但可能会出现错误。D-WAVE QUANTUM INC.、其子公司和附属公司或其各自的董事、员工、代理或其他代表均不对因使用本文档或其中包含或提及的任何信息而引起的或与之相关的损害、索赔、费用或其他成本(包括但不限于法律费用)承担责任。这是全面的责任限制,适用于任何类型的损害,包括(但不限于)补偿性、直接、间接、惩戒性、惩罚性和后果性损害、程序或数据的损失、收入或利润的损失、财产的损失或损坏以及第三方索赔。
声明和免责声明 D-Wave Quantum Inc. (D-Wave)、其子公司和附属公司尽商业上合理的努力确保本文档中的信息准确且最新,但可能会出现错误。D-WAVE QUANTUM INC.、其子公司和附属公司或其各自的董事、员工、代理或其他代表均不对因使用本文档或其中包含或提及的任何信息而引起的或与之相关的损害、索赔、费用或其他成本(包括但不限于法律费用)承担责任。这是全面的责任限制,适用于任何类型的损害,包括(但不限于)补偿性、直接、间接、惩戒性、惩罚性和后果性损害、程序或数据的损失、收入或利润的损失、财产的损失或损坏以及第三方索赔。
在本文中,我们使用密度功能理论研究了P 2 Si纳米骨的物理特性,具有不同的磷 - 磷,磷酸磷和硅硅硅的边缘结构。我们的计算表明,所有三个不同边缘的纳米骨都具有热力学稳定性。具有磷 - 磷边缘结构的纳米替比是半导体,具有不同的能量差异,可向上和向下旋转,并且具有磷 - 硅和硅 - 硅边缘边缘结构的纳米锥具有准代理性能。这些发现在这些纳米容器中表现出磁性的存在。此外,我们已经表明,边缘原子对电子特性的贡献比纳米骨中的中央原子的贡献更为主导。我们的发现表明,具有不同边缘结构的PENTA-P2SI纳米容器可以用作电子和光电应用的有前途的候选者。关键字:五烯 - 格雷烯,状态的部分密度,密度功能理论,带隙。pacs no。73,81
摘要:在 PubMed 中搜索显示,有 72 种放射性核素已被考虑用于分子或功能靶向放射性核素治疗。随着放射性核素疗法的数量和变化不断增加,了解放射性核素的作用以及可能使其有用或无用的各种特性非常重要。本综述重点介绍与放射性核素治疗相关的放射性核素的物理特性,例如线性能量转移、相对生物效应、射程、半衰期、成像特性和辐射防护考虑。所有这些特性在放射性核素之间差异很大,可以针对特定目标进行优化。对某些应用有利的特性有时对其他应用来说可能是缺点;例如,易于成像的放射性核素可能比其他放射性核素带来更多的辐射防护问题。同样,较长的辐射范围对具有异质吸收的目标有益,但也会增加对目标周围组织的辐射剂量,因此,较短的射程可能对均匀吸收更有利。由于每种放射性核素都有一组不可改变的特征,因此人们无法选择一组特征,但所有 72 种用于治疗的放射性核素(以及许多尚未研究的放射性核素)都提供了许多可供选择的集合。
本文档是公认的手稿版本的已发表作品,该作品以《物理化学杂志》 C,版权©2023 American Chemical Society出现在同行评审和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https:// doi.org/10.1021/acs.jpcc.3c00690。
事实上,不同批次的材料物理性质可能会有显著差异,因为普通实验室环境不像工业或大规模环境那样受控;造成批次间差异的传统原因是使用并非专用于某一工艺的玻璃器皿、由于处理和不同供应商而导致的试剂和溶剂差异,甚至是特定实验室内不同季节或不同房间的温度和湿度差异。由于这些考虑,确定应优化哪些参数以获得理想的设备性能并不总是那么容易。为了阐明这个问题,我们在一个实验室中合成了几批次的 Ni3(HITP)2,尽可能使用相同的起始材料和溶剂,并将它们用作 KOH 水性电解质中的超级电容器电极。目标是辨别 MOF 批次的物理性质对设备性能的影响。Ni3(HITP)2 的特点是具有强烈的各向异性结构。配体由芳香族三苯单元组成,这些单元表现出很强的电子离域性,通过亚胺键(更准确地说是亚氨基半醌)与镍中心结合。配体和方平面 Ni 2+ 离子形成石墨烯状二维薄片,其堆叠形成直径约为 1.6 nm 的管状圆柱形通道。合成了三批 Ni 3 (HITP) 2 MOF,这里用 HITP_A、HITP_B 和 HITP_C 表示。它们是以之前发表的方法 8 作为合成条件的起点来制备的,然后根据 ESI 中的描述略有变化,† 产生了相同类型的 MOF 材料,但物理性质差异很大,如表 1 所示。三个样品的电导率分别跨越两个数量级,从 2·10·4 S cm 1 到 4·10·2 S cm 1 (对于 HITP_A 和 HITP_C)。通过拟合在 77 K 下测得的 N 2 吸附等温线确定的 BET 表面积相差三倍,从 260 m 2 g 1 到 825 m 2
目的:我院于2021年2月引进的计算机断层扫描(CT)设备增加了利用人工智能(AI)技术的新型图像重建方法。这种重建方法被称为深度学习重建(Deep Learning Reconstruction,以下简称DLR),佳能称之为高级智能Clear-IQ引擎(Advanced intelligent Clear-IQ Engine,以下简称AiCE)。本研究的目的是评估各重建方法的物理特性和实用性,例如利用AI技术的新型图像重建方法AiCE和目前我院使用的迭代重建方法自适应迭代剂量减量3D(以下简称AIDR 3D)。 方法:通过(1)噪声评估(使用径向频率法测量噪声功率谱(NPS))、(2)低对比度分辨率评估(使用自制模型测量对比度噪声比(CNR))和(3)空间分辨率评估(使用圆边缘法测量调制传递函数(MTF))(1)来评估物理特性。假设成像条件为腹部区域,改变管电流来比较四种重建方法(滤波反投影 (FBP)、AIDR 3D Mid、AIDR 3D 增强 Mid 和 AiCE Body Mid)。 结果:在 NPS、CNR 和 MTF 测量中,AiCE 通常在所有 mAs 值下均显示出最佳结果。然而,在 NPS 测量的低频区域,AiCE 与其他重建方法相比并没有表现出显著差异。 此外,当比较 AIDR 3D 和 AiCE 的重建时间时,AiCE 所花的时间是 AIDR 3D 的 3 到 4 倍。 结论:本研究中,AiCE 在腹部条件下检查的三个物理特性方面优于 AIDR 3D,并且在图像质量方面有用。然而,在考虑重建时间时,需要考虑AiCE图像的运行可能会影响检查进度的可能性。
自从DNA双螺旋结构被发现以来,基因组研究的范围不断扩大,我们对基因组的认识也得到了极大的进步;与此同时,许多模式生物的全基因组测序已经完成,而基因组编辑技术也正在迅速普及。过去的基因组研究主要集中在基因组信息的复制、修复、重组、分裂等信息层面,并进一步强调表观遗传调控来解释遗传现象。另一方面,DNA的物理性质,如硬度、扭转、超螺旋等,虽然是直接影响基因组结构的重要性质,但人们对其了解甚少。在本项目中,我们将重点研究基因组/DNA的物理性质,以了解基因组如何构建其结构以及如何发挥作用。我们将“基因组模态”定义为组织基因组结构和功能的多维模式。我们将从基因组模态的角度揭示基因组的真实面貌。为此,我们运用生物化学、细胞生物学、基因组科学、高分子物理学等方法,开辟了研究“基因组形态”的新领域。【研究项目内容】