20 世纪 30 至 50 年代,核糖体首次被发现。科学家们认识到核糖体是异质性的,因为他们注意到用电子显微镜观察到的颗粒大小和形状存在差异[4]。一个假说进一步发展了这一模型,该假说描述了每个核糖体如何包含翻译一种蛋白质所需的遗传信息[5]。然而,随着这个假说被推翻和忽视,核糖体异质性模型也被推翻。将外来噬菌体 RNA 引入大肠杆菌后,细菌核糖体会进行翻译,这一发现支持了人们不再依赖核糖体特化模型的观点[6]。科学界普遍认为,核糖体是非特化的机器,能将任何 mRNA 转化为蛋白质。研究方法和技术的进步使得人们能够对核糖体进行更细致的研究,更清楚地表明核糖体的核糖体蛋白质 (RP) 组成可能存在异质性。 RP 组成的差异可能是由于特定 RP 同源物在不同组织或器官中的表达所致,例如拟南芥增殖组织中的 RPS5A 和 RPS18A [ 7 ] 出现在果蝇 [ 8 ] 和小鼠 [ 9 ] 的性器官中,并且随着细胞的不断分化和发育 [ 10 ]。此外,在小鼠中,RP 同源物 RPL39L(核糖体大亚基 L39 样蛋白)掺入核糖体会通过改变多肽出口通道的大小和电荷来影响翻译速度 [ 11 ],这有助于调节一组必需的雄性生殖细胞特异性蛋白质的折叠,而这些蛋白质是精子形成所必需的 [ 12 ]。在发育中的小鼠胚胎中,含有 RPL10A 的核糖体更倾向于经典 Wnt 信号通路成员的转录本,从而形成了一种特化,这对于发育过程中中胚层的正常产生至关重要 [ 13 ]。此外,虽然进化保守的核心 rRNA 在物种间保持高度保守,但人们认识到真核生物已经进化出包含扩展片段 (ES) 的 rRNA 序列。这些 ES 是从核心
人类大脑包含多个区域,这些区域具有不同的、通常高度专业化的功能,从识别面部到理解语言,再到思考他人的想法。然而,大脑皮层为何会表现出如此高度的功能专业化仍不清楚。在这里,我们使用人工神经网络来考虑面部感知的情况,以检验以下假设:大脑中面部识别的功能分离反映了对面部和其他视觉类别的视觉识别这一更广泛问题的计算优化。我们发现,经过物体识别训练的网络在面部识别方面表现不佳,反之亦然,并且针对这两项任务进行优化的网络会自发地将自己分离为面部和物体的独立系统。然后,我们展示了其他视觉类别不同程度的功能分离,揭示了优化(没有内置的任务特定归纳偏差)导致机器功能专业化的普遍趋势,我们推测,大脑也是如此。
。CC-BY-NC 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2021 年 7 月 6 日发布。;https://doi.org/10.1101/2021.07.05.451192 doi:bioRxiv 预印本
DNA 甲基化是调节生物体基因表达的重要因素。然而,DNA 甲基化是否在适应性进化中发挥关键作用尚不清楚。本文,我们展示了拟南芥中自然选择的 DNA 甲基化的证据。与单核苷酸多态性相比,三种类型的甲基化——甲基化 CG (mCG)、mCHG 和 mCHH——对拟南芥种群中基因表达水平的变化贡献很大。这些表达不稳定的基因在很大程度上影响了特化代谢量的巨大变化。在这三种类型的甲基化中,只有位于与特化代谢物相关的基因启动子区域的 mCG 在拟南芥种群中显示出选择性清除特征。因此,自然选择的 mCG 似乎是导致植物进化过程中与特化代谢物相关的表达多样性的关键突变。
大多数动物,包括人类,都是由不同的器官和组织组成的,这些器官和组织由发挥特定作用的特化细胞组成。当组织退化或受损时,受影响的细胞必须被替换,以便组织能够继续发挥其作用。这种再生潜力的存在要归功于每个组织中的干细胞群,这些干细胞可以分裂产生更多的干细胞——维持一个恒定的干细胞池用于修复——或者分化成特化细胞来替代受损细胞。干细胞的分裂和分化需要保持平衡:如果太多的干细胞分化,干细胞池可能会耗尽,但如果干细胞分裂不受控制,这可能会导致癌症。然而,这种平衡往往会随着年龄的增长,或由于环境或遗传原因而失效。再生医学的目标之一是在实验室中生产可用于
在两种情况下(培养未分化细胞和 CD56 + 细胞期间)孵育后,计算集落形成单位(CFU,具有超过 100 个细胞的神经球)、簇形成单位(ClFU,30 至 100 个细胞的神经球)的含量、CFU 的有丝分裂活性及其特化强度。使用羟基脲(1 µ M)通过细胞自杀技术评估祖细胞的增殖活性。[6] 细胞周期 S 期的 CFU 池根据以下公式确定:N = [( ab)/a ] × 100%,其中 a 是未用羟基脲处理的细胞的 CFU 数量的组平均值;b — 用羟基脲处理的细胞的 CFU 数量的组平均值。通过计算 ClFU 与 CFU 的比率来确定祖细胞特化过程的强度(分化指数)。[6,9]
绘制大脑不对称图谱 Arthur W. Toga 和 Paul M. Thompson 神经成像实验室 加州大学洛杉矶分校医学院神经病学系 摘要 动物和人类都存在大脑结构、功能和行为上的不对称现象。这种偏侧性被认为源于进化、遗传、发育、经验和病理因素。本文回顾了描述大脑不对称的各种文献,主要关注那些描述大脑半球解剖学差异的观察结果。 简介 大多数生物系统都表现出一定程度的不对称 1 。从人类到低等动物,正常的变异和特化都会产生功能和结构的不对称。甚至面部和四肢的外部特征也能证明这种不对称 2 。在人类和许多其他哺乳动物中,两个大脑半球在解剖学和功能上有所不同。虽然粗略检查人脑的宏观特征无法发现明显的左右差异,但仔细检查其结构就会发现各种不对称特征。这种侧化特化被认为源于进化、发育、遗传、经验和病理因素。例如,左半球语言皮层的进化扩张可能导致布罗卡言语区、颞平面(颞叶后部的听觉处理结构)和其他对言语产生、感知和运动优势至关重要的结构出现明显的体积不对称。大脑功能布局、细胞结构和神经化学的不对称也与不对称行为特征有关,例如惯用手、听觉感知、运动偏好和感觉敏锐度。在这里,我们回顾了各种方法及其对大脑结构和功能不对称的观察结果,特别关注解剖学差异。特别是大脑映射方法可以检测和可视化整个人群的不对称模式,包括疾病、年龄和发育过程中的细微变化。这些工具和其他工具在评估调节大脑认知特化的因素方面显示出巨大的潜力,包括大脑不对称的个体发育、系统发育和遗传决定因素。语言和惯用手语言。左半球的语言特化是大脑不对称的最早观察结果之一。19 世纪的 Broca 3 和 Wernicke 4 报告称,语言会因左半球的肿瘤或中风而受到更严重的损害。语言产生和句法处理的某些方面 5,6 随后主要定位到左半球前部的区域,包括下额回的三角部和岛叶部(布罗卡区;见图 1)。另一方面,语言理解,例如理解口语 7 ,主要局限于后颞顶叶区域,包括韦尼克区(布罗德曼区 39、40、后 21 和 22 以及 37 的一部分)。许多行为任务进一步阐明了语言回路,包括语法处理、语义知识和句法测试 8、5-6、9 。
血脑屏障 (BBB) 保护大脑并维持神经元稳态。不同大脑区域的 BBB 特性可能有所不同,以支持区域功能,但人们对 BBB 异质性如何发生了解甚少。在这里,我们使用单细胞和空间转录组学将小鼠正中隆起(一种具有天然渗漏血管的脑室周围器官)与皮质进行比较。我们在内皮细胞 (EC) 和血管周围细胞(包括星形胶质细胞、周细胞和成纤维细胞)中发现了数百种分子差异。使用电子显微镜和水基组织透明化方法,我们揭示了这些区域中 EC 和血管周围细胞的不同解剖特化和相互作用模式。最后,我们确定了候选的区域富集 EC-血管周围细胞配体-受体对。我们的结果表明,EC 中的分子特化和独特的 EC-血管周围细胞相互作用都导致了 BBB 功能异质性。该平台可用于研究其他区域的 BBB 异质性,并可能促进中枢神经系统区域特异性治疗的发展。
2020年9月 - 宾夕法尼亚大学宾夕法尼亚大学化学工程和能源的总统杰出教授现任政策 - 2020年5月 - 2021年1月1日至2021年首席副副秘书(PDAS)世界资源研究所高级研究所,副秘书长(PDAS)。能源和碳管理,2022年5月,美国华盛顿特区美国能源部,2018年8月 - 伍斯特化学工程学院詹姆斯·H·曼宁(James H. Golden,Co