• 信道和源编码、模拟和数字(FM / AM / DVB / DAB / DRM)广播 • 高速信号处理 • 遥感、雷达技术:主动、被动、成像、侦察和二次雷达 • 天线、天线系统、波传播、EMC • 材料参数测量、材料无损检测、具有特殊性能的超材料设计(超级透镜、电磁隐蔽和屏蔽)
陶瓷金属复合材料具有重量轻、成本低、耐磨、耐腐蚀、强度高等特殊性能,是传统材料中颇具前途的先进材料。搅拌铸造是制造铝基复合材料成本最低、最简单的方法之一。搅拌铸造的主要局限性是增强陶瓷颗粒(团聚体)在金属基体中的分布不良、制造过程中复合材料的孔隙率以及陶瓷颗粒与熔融金属的润湿性。提高陶瓷金属基复合材料 (CMMC) 的搅拌铸造参数是许多研究的主要目标。本文将详细讨论搅拌铸造工艺,其中包括影响增强体均匀分布、制造过程中复合材料的孔隙率以及陶瓷金属基复合材料的力学性能的参数。
I. 引言 经认证可用于太空的材料具有特殊性能(例如重量轻、抗电离辐射、多功能能力、自愈能力和出色的热稳定性),使得它们可以在电离辐射、极端温度、微陨石和深真空等环境中生存。许多太空应用需要在材料表面涂上涂层以保护材料或改变其性质。用于航天器的材料及其涂层都必须易于使用、排气性低且在太空环境中稳定。然而,尽管具有独特的特性,但太空对于航天器上使用的材料(尤其是其外表面)来说是一个恶劣的环境。由于紫外线和粒子损伤等不同的外部因素,大多数这些材料都会出现一定程度的退化。航天器设计的关键方面之一是热控制系统,其功能是将航天器系统的温度保持在其工作范围内。遥远行星际空间中航天器某一区域的绝对温度
摘要 碳复合材料因其特殊性能而应用于各个行业,尤其是航空航天工业。广泛使用的碳纤维增强聚合物 (CFRP) 甚至已应用于飞机主要结构。开发能够轻松检测和识别碳纤维材料退化的先进诊断技术仍然是各种无损检测方法面临的挑战。本文介绍了应用涡流 (EC) 检测碳复合材料结构的可能性。开发并测试了两种类型的涡流探头,并获得了优异的结果。新的传统涡流探头能够可靠且轻松地检测表面和地下不连续性,例如分层和厚度变化。针对不同类型的碳复合材料(基质和增强材料类型、铺层)描述了探头设置参数。精确的设置对于成功的涡流检测必不可少。经确定,对于样品,可靠检测的最小表面缺陷尺寸为 Ø1.5 mm,并且根据碳复合材料的类型,涡流能够穿透厚度高达约 4 mm。此外,本文还介绍了涡流检测与超声相控阵法 (PAUT) 的比较。复合材料飞机结构很容易受到通常使用 PAUT 检测的冲击损伤。因此,冲击数据的灵敏度和分辨率分析
大气中二氧化碳 (CO 2 ) 浓度的持续增加引发了全球变暖和气候变化,碳中和是人类社会最重要的目标之一。CO 2 的捕获和转化已成为减缓气候变化和减少温室气体排放的研发热门领域。先进材料和工艺在这些努力中发挥着至关重要的作用。在 CO 2 捕获中,目标是捕获来自发电厂、工业过程和运输等各种来源的 CO 2 排放。正在开发多孔材料、膜和溶剂等先进材料以选择性捕获 CO 2。这些材料具有高表面积和特殊性能,能够有效地吸附和分离 CO 2。西波美拉尼亚理工大学的 Karolina 通过热液工艺从甜菜糖蜜中制备碳质材料,然后进行化学活化,并将其用于 CO 2 捕获(Kielbasa)。具有 2005 m 2 g −1 高比表面积和 0.851 cm 3 g −1 总孔体积的活性生物碳在 1 bar 和 0 °C 下对 CO 2 的最高吸附量为 7.1 mmol/g。一旦捕获 CO 2,就可以通过各种过程将其转化为有价值的产品。人们正在探索先进的催化材料,将 CO 2 转化为化学品、燃料和其他有用的产品。例如,CO 2 可以转化为甲醇,甲醇可以用作燃料或作为生产其他化学品的原料。江苏大学的徐等人用溶胶-凝胶法制备了具有 Cu 2 In 合金结构的 Cu 1 In 2 Zr 4 -OC 催化剂,用于 CO 2 加氢制甲醇(宋等人)。他们发现煅烧前后的等离子体处理可以在一定程度上提高 CO 2 加氢活性。尤其是在煅烧前经过等离子体改性的Cu1In2Zr4-O-PC催化剂上,在反应温度270℃、反应压力2MPa、CO2/H2=1/3、GHSV=12000mL/(gh)的条件下,CO2转化率达到13.3%,甲醇选择性达到74.3%,CH3OH时空产率达到3.26mmol/gcat/h。这是因为等离子体改性可以减小粒径,增强Cu和In之间的相互作用,并使Cu的2p轨道结合能移至更低位置。期待先进技术将在制备具有高CO2转化效率和稳定性的材料方面做出巨大贡献。电化学过程(例如电还原)也正在用于CO2转化的研究。曹等人。嘉兴学院教授综述了电催化领域的最新进展