詹姆斯·P·哈威尔上校 美国陆军达格威试验场指挥官 犹他州达格威 哈威尔上校来自中西部,在美国陆军长大。他于 1999 年毕业于印第安纳大学,并被任命为美国陆军化学兵团成员。在其职业生涯中,哈威尔上校担任过各种指挥和参谋职务。他的第一份工作是在佐治亚州斯图尔特堡,他在那里担任营、中队和师参谋以及净化排长,并被部署到波斯尼亚和黑塞哥维那和伊拉克。后来,他指挥驻韩国的第 501 和第 62 化学连,并将第 62 化学连从韩国调至华盛顿州刘易斯-麦考德联合基地。完成指挥任务后,他被任命为刘易斯-麦考德联合基地第 110 化学营成立后第一任 CBRNE 反应小组组长。作为一名 CRT 领导,他被派往伊拉克担任联合特遣部队 - 特洛伊的技术护送支队指挥官。随后,他以艾布拉姆斯研究员的身份被分配到联合参谋部 J3 和陆军 G8。完成艾布拉姆斯研究员计划之后,哈威尔上校担任得克萨斯州胡德堡第 2 化学营和第 48 化学旅的 S3。随后,他被分配到密苏里州伦纳德伍德堡的机动支援卓越中心能力发展整合局,担任 CBRN 概念官。哈威尔上校随后就读于美国陆军高级军事研究学院,随后在阿富汗巴格拉姆机场担任特种作战联合特遣部队 - 阿富汗计划副主任。从阿富汗重新部署后,哈威尔上校指挥着得克萨斯州布利斯堡的第 22 化学营。 2020 年,哈维尔上校重返五角大楼,担任联合参谋部 J5 的 CWMD 战略、政策和计划部门副主任。2022 年 6 月,哈维尔上校调至联合参谋部 J8,担任 CBRN 防御联合需求办公室副主任,直至 2023 年 6 月离开联合参谋部。哈维尔上校的军事教育包括美国陆军化学军官基础课程、化学上尉职业课程、美国陆军指挥参谋学院和高级军事研究学院。
美国陆军退役 (R) 中将 (LTG) Gwen Bingham 是美国陆军退役三星将军,出生于阿拉巴马州特洛伊。1981 年 8 月,她以优异的军事成绩从阿拉巴马大学陆军后备军官训练团毕业,获得商业和工商管理理学学士学位。她被任命为军需部少尉。Bingham 中将拥有中央密歇根大学的管理学硕士学位和国防大学的国家安全战略与资源硕士学位。LTG (R) Bingham 担任过许多与其军衔相称的职位,并在美国本土和海外服役。2010 年 4 月,Bingham 中将 (R) 被派往科威特和阿富汗,支援伊拉克自由行动和持久自由行动。她是一位开拓者,是第一位担任多个将军职位的女性。其中包括:陆军第 51 军需官和美国陆军军需学校校长;白沙导弹靶场指挥官;坦克汽车和军备生命周期管理司令部指挥官。她在 38 年的服役生涯中,最后担任五角大楼设施管理 HQDA 助理参谋长。Bingham 中将的专业隶属关系包括:外交关系委员会成员;全国公司董事协会;BoardProspects 成员;蓝星家族董事会主席; Owens and Minor, Inc. 董事会独立董事;SitelogIQ 董事会独立董事;Exactech 董事会独立董事;美国陆军协会终身会员;ROCKS, Incorporated 终身会员;以及 Delta Sigma Theta Sorority, Incorporated 终身会员。LTG (R) Bingham 入选 2022 年陆军妇女基金会名人堂和 2022 年军需部名人堂;被评为 2022 年阿拉巴马大学杰出校友;2021 年“CNN 变革冠军”,并获得 2019 年白宫记者早午餐“无畏”奖;2019 年联合女性领导力卓越功绩服务奖;2018 年埃利斯岛荣誉勋章; 2018 年女性国防服务奖和 2014 年年度摇滚奖。她和她的丈夫 Patrick J. Bingham 博士有两个成年子女,居住在德克萨斯州利安德。
亲自出席 1. 指定联邦官员的评论。David Nagle 先生是美国军事学院 (USMA) 访问委员会 (BoV 或委员会) 的指定联邦官员。USMA 参谋长 Khanh Diep 上校 (COL) 主持会议,并郑重声明,BoV 在美国法典第 10 篇第 7455 节的授权下运作。该委员会是受联邦咨询委员会法案约束的咨询委员会。她进一步表示,会议向公众开放,但与会公众不得提出现场问题或就讨论的任何问题发言。公众可以向 BoV 提交书面声明。 2. 主席的评论。BoV 主席、国会议员 Steve Womack 宣布会议开始并欢迎各位成员。他表示,BoV 的正式任务是向美国总统报告与 USMA 有关的所有事务,不属于 USMA 的指挥链,而是以顾问身份提供服务。他承认《联邦公报》会议通知的发布有所延迟,并承认公众成员对委员会的陈述和问题(附录 C)。他还承认并欢迎委员会最新任命的总统特洛伊·科罗纳多上校(退休)。在欢迎他加入委员会时,迪普上校主持了科罗纳多上校(退休)的宣誓就职仪式。3. 主管的发言。中将 (LTG) Steven Gilland 感谢主席和其他委员会成员出席会议,并感谢他们对美国军事学院和学员队的持续支持。 4. 陆军部长代表的讲话:陆军人力和预备役事务 (ASA (M&RA)) 助理部长 Agnes Schaefer 博士阁下感谢董事会成员的出席,并感谢陆军高层领导对 USMA、陆军和国家的持续支持和服务。她承认这将是她作为陆军部长代表参加的最后一次会议,她对过去两年共同完成的工作感到自豪。她还表示相信 USMA 的学员正在培养在当前复杂威胁环境中成功运作所需的技能。最后,她感谢董事会和 USMA 领导层对陆军的持续支持,并表示相信西点军校将继续成为下一代陆军领导人的希望灯塔。5. 行政公告。Diep 上校指出,上一次董事会会议于 2024 年 7 月 26 日在西点军校举行,出席人数达到法定人数。对于今天的会议,她表示,董事会成员已获得会议议程和幻灯片;会议记录
简介 纽约州的沿海资源包括自然资源、休闲资源和经济资源,是纽约州最宝贵的资产之一。纽约州的海岸线绵延 3,200 多英里,拥有多种海洋和淡水资源,分为四个不同的区域:长岛,一个冰川形成的岛屿,北面是长岛海峡,南岸是大西洋;纽约市,一个主要的国际城市和港口,沿海高度发达,对有限资源的竞争非常激烈;哈德逊河谷,一条具有生态和历史重要性的走廊,从特洛伊的联邦大坝延伸到纽约港;五大湖 - 圣劳伦斯河地区,一个广阔的淡水非潮汐沿海系统,拥有多样化的农业景观、壮观的海岸线、大型港口和小型港口。纽约州的沿海地区是独一无二的,因为它包含各种自然、休闲、工业、商业、文化、美学和能源资源,具有地方、州、地区和国家意义。由于资源的多样性,沿海地区受到竞争需求的威胁。纽约州沿海县仅占纽约州陆地面积的 12%,约有 1600 万人(约占纽约州人口的 85%)生活和工作在沿海县。纽约州沿海地区每年雇用约 730 万人,总收入近 5240 亿美元。这相当于近 1.3 万亿美元的国内生产总值。纽约州 2021-2025 年第 309 条评估和战略通过评估九个沿海改善区来研究问题和机遇:湿地、沿海危害、公共通道、海洋垃圾、累积和二次影响、特殊区域管理计划 (SAMP)、海洋和五大湖资源、能源和政府设施选址以及水产养殖。 2021-2025 年第 309 条评估和战略以之前的 309 条沿海改善战略为基础,反映了自 2015 年以来沿海县和社区的变化。之前的纽约州 309 条战略高度重视保护海洋和五大湖资源,并通过制定新的 SAMP 来解决累积和次生影响,以解决影响五大湖和长岛南岸的区域问题。在 2021-2025 年评估和战略中,纽约将继续努力扩大 SAMP 的重点,以解决各种关键的沿海问题,包括保护和恢复自然区域,帮助我们的沿海社区更好地应对不断变化的气候条件和沿海灾害。2021-2025 年 309 条评估和战略总结了自 2015 年以来取得的成就,并规划了未来五年的发展道路。评估描述了九个改善区域中的每一个与纽约沿海和海洋资源相关的现状和相关成就。战略部分确定了
印第安纳州豪威市豪威军事学校 夏威夷州檀香山市卡美哈梅哈男子学校 密苏里州布恩维尔市肯珀军事学校和学院 纽约州长岛奥克代尔市拉萨尔军事学院 纽约州曼利乌斯市曼利乌斯学校 伊利诺伊州奥罗拉市马米恩军事学院 纽约州康沃尔哈德逊市纽约军事学院 新墨西哥州罗斯威尔市新墨西哥军事学院 俄克拉荷马州克莱尔莫尔市俄克拉荷马军事学院 堪萨斯州海斯市圣约瑟夫军事学院 德克萨斯州圣安东尼奥市德克萨斯军事学院 密苏里州列克星敦市温特沃斯军事学院 伊利诺伊州奥尔顿市西部军事学院 奉陆军部长命令:
安迪、布雷隆·弗莱明·班克斯、乔·巴拉塔、詹·拜尔、比利·比尔格、大卫·布拉德利、吉恩·巴西、波琳·巴西、伊丽莎白·布佐佐斯基、杰克·伯克、詹姆斯·伯克、瑞安·伯克、佩内洛普·卡特、玛丽·克里斯蒂、芭芭拉·科勒、查尔斯·康罗伊、迪肯·迈克尔·康罗伊、科琳·怀特·库尼、南希·达西、雪莉·迪兹、蕾妮·德库托斯基、加里·德尔·佐托、科琳·德什、玛丽·杜纳、哈利和琼·法塞特、克里斯蒂娜·芬利、大卫·弗莱明三世、迪·弗莱明、安吉·甘皮科、加里和林恩·格博、艾达·格林菲尔德、安妮·格罗根、爱德华·格罗根、本·哈斯、帕特里夏·汉肖、珍妮特·哈里森、斯科特·海默、丹·霍勒兰二世、黛比·霍尔茨、爱德华·胡德、弗兰克·胡德、比尔·霍普金斯、波尼·霍普金斯、格洛丽亚休恩克、乔安妮、唐娜·约翰逊、劳拉·约翰逊、弗兰克·凯恩、贝蒂·基利、大卫·科珀、杰西卡·库里、艾琳·库科达、蒂姆·库科达、迪克·库斯汀、约翰·雷斯、劳雷尔·洛根、凯西和达拉斯·卢茨、布莱恩·麦克班、巴里·麦考尔、特洛伊·麦克罗里、布莱恩·麦格林、吉姆·麦克劳林、凯莉·麦克劳林、朗达·麦克劳林、莎伦迈耶斯,洛里·米勒,安·蒙奇克,阿莉娅·纳什,安德里亚·尼禄,艾琳·麦克拉弗蒂·奥尼尔,希瑟·帕斯蒂,路易莎·佩里科内,贾妮丝·彭兹沃特,约苏·皮内达,凯伦·普卢德,芭芭拉·波特,戴夫·兰金,詹姆斯·鲁杰斯,安·萨博,理查德·萨拉蒂诺,罗莎莉·萨拉蒂诺,肯·修罗,朱莉娅·布鲁顿·谢泼德,安·雪莉,伊冯Sherry、Bill 和 Theresa Sherwin、Richard Springer、Janet Townsend、Jack Turner、Hank Upright、Virginia、Mary Walsh、Merwyn Walther、Paula Watson、Amy Wilkinson、Bob Witt、Carol Witt、Jennifer Yeager
1 科罗拉多州立大学物理系,科罗拉多州柯林斯堡 80523,美国 2 麦吉尔大学物理系,魁北克省蒙特利尔 H3A 2T8,加拿大 3 SUBATECH,南特大学,IMT Atlantique,CNRS/IN2P3,法国南特 44307 4 斯坦福大学物理系,加利福尼亚州斯坦福 94305,美国 5 SLAC 国家加速器实验室,加利福尼亚州门洛帕克 94025,美国 6 太平洋西北国家实验室,华盛顿州里奇兰 99352,美国 7 德雷塞尔大学物理系,宾夕法尼亚州费城 19104,美国 8 马萨诸塞大学阿默斯特基础相互作用中心和物理系,马萨诸塞州阿默斯特 01003,美国 9 国家研究中心“库尔恰托夫研究所”,俄罗斯莫斯科 123182 10 劳伦斯利弗莫尔国家实验室,美国加利福尼亚州利弗莫尔 94550 11 肯塔基大学物理与天文系,美国肯塔基州列克星敦 40506 12 布鲁克海文国家实验室,美国纽约州厄普顿 11973 13 伦斯勒理工学院物理、应用物理与天文系,美国纽约州特洛伊 12180 14 TRIUMF,加拿大不列颠哥伦比亚省温哥华 V6T 2A3 15 SNOLAB,加拿大安大略省莱夫利 P3Y 1N2 16 劳伦森大学自然科学学院,加拿大安大略省萨德伯里 P3E 2C6 17 中国科学院高能物理研究所,中国北京 100049 18 卡尔顿大学物理系,加拿大安大略省渥太华 K1S 5B6 19 阿拉巴马大学物理与天文系,阿拉巴马州塔斯卡卢萨35405,美国 20 北卡罗来纳大学威尔明顿分校物理与物理海洋学系,美国北卡罗来纳州威尔明顿 28403 21 天际线学院,美国加利福尼亚州圣布鲁诺 94066 22 科罗拉多矿业学院物理系,美国科罗拉多州戈尔登 80401 23 南达科他大学物理系,美国南达科他州弗米利恩 57069 24 IBS 地下物理中心,韩国大田 34126 25 加利福尼亚大学圣地亚哥分校物理系,美国加利福尼亚州拉霍亚 92093 26 温莎大学物理系,加拿大安大略省温莎 N9B 3P4 27 西开普大学物理与天文系,南非贝尔维尔 P/B X17 7535 28 加利福尼亚大学欧文分校物理与天文系,加利福尼亚州欧文92697,美国 29 耶鲁大学物理系莱特实验室,康涅狄格州纽黑文 06511,美国 30 皇后大学物理系,安大略省金斯顿 K7L 3N6,加拿大 31 中国科学院微电子研究所,北京,100029,中国(日期:2024 年 7 月 2 日)
主席 S TEVENS。听证会即将开始。如无异议,主席有权随时宣布休会。早上好,欢迎参加与研究和技术小组委员会以及能源小组委员会的联合听证会。也热烈欢迎我们尊敬的证人小组。今天是献给每一位学生、研究人员、工程师、一线工人、产品经理和美国家庭的,他们对美国工业地位的未来、我们无限的创新潜力和我们劳动力的实力感到好奇。这次听证会的灵感来自于美国对卓越的动力和渴望,软件工程师与装配工人相遇,以提供前所未有的质量,我们在哪里以及如何创新未来。特别要欢迎他的前同事,来自密歇根州第 11 区的选民,来自位于威克瑟姆和特洛伊的 Hexagon Manufacturing Intelligence 的 Ryan Myers 先生。美国制造业是一个由多个机构组成的网络,它汇集了多个联邦机构、大型和小型制造商、大学、社区学院和非营利组织,以促进新技术、满足研究需求并培训未来的劳动力。这一举措源于一项政策处方,旨在回答我们作为一个国家在后衰退时代面临的问题:我们如何制定有竞争力的创新议程,并确保研究和技术在我们的社区中进行,并与包容性和必要的利益相关者合作?我很荣幸能够认可我们在先进制造业创新方面的振兴方法所取得的成就,以及过去十年许多人为实现这一目标所付出的努力。从扬斯敦的一个试点机构开始,由国家国防制造和机械加工中心牵头,美国制造业已经投资于 3D 打印技术的开发和供应链采用。此外,他们还为国家制定了劳动力培训路线图,包括退伍军人培训计划。美国制造业研究院是美国在先进制造业领域全球领导地位的重要组成部分。这些研究院为美国工业和学术界提供了一个独特的协作平台,以交流一流的专业知识来解决挑战并推动创新。它们还为各种规模的行业合作伙伴创造了宝贵的机会,使他们能够建立网络、共享数据、交换技术和开展新业务。中小型企业占美国所有制造企业的 98%,这些研究院为保持企业竞争力至关重要的研究和创新提供了独特的途径,而这些工作是他们无法独自完成的。正如我们今天将听到的那样,私营部门一直大力支持美国制造业研究院。在该计划实施期间,支持承诺已增至 30 多亿美元,10 亿美元的联邦资金加上超过 20 亿美元的非联邦投资。联邦政府在催化新研发方法方面的作用仍然至关重要,并确定了美国制造业机构的价值。它需要联邦领导将所有利益相关者带到
《金羊毛》的故事情节无法确定精确的历史时间线,因为在荷马写下史诗《伊利亚特》和《奥德赛》时,即公元前 8 世纪左右,金羊毛已经存在于有记载的历史范围之外。虽然考古学已经证实一些神话故事,如特洛伊战争,包含部分事实,但伊阿宋寻找金羊毛的过程却跨越了幻想与现实的边界。《金羊毛》中描绘的社会反映了古希腊黑暗时代的精神,这一时期的特点是迈锡尼等城市在公元前 1200 年左右衰落,几个世纪后复杂文明的复兴。社区很小,严重依赖国王或领导人的保护。这些村庄范围之外的世界十分广阔,每一片陌生的土地上都潜伏着潜在的危险。杰森的旅程从希腊中部的色萨利出发,穿过爱琴海,到达利姆诺斯岛等真实岛屿,途经险峻的山脉、波涛汹涌的大海和阴暗的森林。爱尔兰民俗学家帕德里克·科伦于 1921 年重述了《金羊毛和阿喀琉斯之前的英雄》,威利·波加尼用生动的插图重新诠释了古典希腊神话。该系列于 1922 年获得纽伯瑞奖,并多次更新和重新出版,包括 2010 年版,由波西·杰克逊系列的著名作家里克·里尔登作序。这本书围绕战争、爱情、牺牲、自私、荣誉、责任和转变等主题,编织了神、凡人和奇幻生物的故事。虽然杰森、宙斯、普罗米修斯和喀耳刻等著名人物占据了中心位置,但鲜为人知的人物也受到了关注,包括关于阿普绪尔托斯被杀、埃厄忒斯国王和莱姆尼亚少女的故事。虽然被归类为儿童读物,但其丰富、富有诗意的语言将吸引年轻和年长的读者。故事分为三个主要部分,每个部分都围绕杰森和阿尔戈英雄在美狄亚的请求下为佩利阿斯国王取回神话中的金羊毛的危险旅程展开。本系列中的神话都与杰森和金羊毛的中心故事有关。第一部分包括“阿尔戈”和“佩利阿斯国王”等故事,杰森发现佩利阿斯国王希望他得到金羊毛,这样他就可以远离王国。尽管知道这是一项艰巨的任务,杰森还是同意这样做,以成名。在第二部分中,我们看到了《女巫美狄亚》和《夺取金羊毛》等故事,其中杰森和他的朋友们面临着获得金羊毛的艰难挑战。他们必须驯服公牛,击退军队,并在美狄亚的帮助下打败一条蛇。第三部分包括《女猎手阿塔兰塔》和《忒修斯与牛头怪》等故事,“忒修斯和赫拉克勒斯等英雄面临自己的挑战和冒险。编撰这部作品集的帕德里克·科伦也是一位诗人、剧作家和小说家,以爱尔兰血统和文学贡献而闻名。
[1] Hamed S. Alavi,Elizabeth Churchill,David Kirk,Henriette Bier,Himanshu Verma,Denis Lalanne和HolgerSchnädelbach。2018。从工件到建筑。在2018年ACM会议伴侣设计互动系统(中国香港)的会议记录中(18岁)。计算机协会,纽约,纽约,美国,387–390。https://doi.org/10.1145/3197391.3197393 [2] Hamed S. Alavi,Elizabeth F. Churchill,Mikael Wiberg,Denis Lalanne,Peter Lalanne,Peter Dalsgaard,Peter Dalsgaard,Peter Dalsgaard,Ava Fatah gen Schieck和Yvonne Rogers。2019。人类建设互动简介(HBI):将HCI与建筑和城市设计相结合。acm trans。计算机。互动。26,2,第6条(2019年3月),10页。 https://doi.org/10.1145/3309714 [3] Don Alexander和Bronwyn Wydeman。 2020。 新的城市主义和环境心理学的交集和差异:探索。 建筑环境中的边界6(2020),61。https://doi.org/10.3389/fbuil.2020.00061 [4] Alessandro Aurigi,Katharine Willis和Lorena Melgaco。 2016。 从“数字”到“智能”:升级城市。 在第三届媒体建筑双年展会议论文集(澳大利亚悉尼)(MAB)。 计算机协会,美国纽约,美国纽约,第10、4页。 https://doi.org/10.1145/2946803.2946813 [5] Andreas Butz。 2010。 用于环境智能和智能环境的用户界面和HCI。 Springer US,马萨诸塞州波士顿,535-558。 2017。 2008。 2010。26,2,第6条(2019年3月),10页。https://doi.org/10.1145/3309714 [3] Don Alexander和Bronwyn Wydeman。 2020。 新的城市主义和环境心理学的交集和差异:探索。 建筑环境中的边界6(2020),61。https://doi.org/10.3389/fbuil.2020.00061 [4] Alessandro Aurigi,Katharine Willis和Lorena Melgaco。 2016。 从“数字”到“智能”:升级城市。 在第三届媒体建筑双年展会议论文集(澳大利亚悉尼)(MAB)。 计算机协会,美国纽约,美国纽约,第10、4页。 https://doi.org/10.1145/2946803.2946813 [5] Andreas Butz。 2010。 用于环境智能和智能环境的用户界面和HCI。 Springer US,马萨诸塞州波士顿,535-558。 2017。 2008。 2010。https://doi.org/10.1145/3309714 [3] Don Alexander和Bronwyn Wydeman。2020。新的城市主义和环境心理学的交集和差异:探索。建筑环境中的边界6(2020),61。https://doi.org/10.3389/fbuil.2020.00061 [4] Alessandro Aurigi,Katharine Willis和Lorena Melgaco。2016。从“数字”到“智能”:升级城市。在第三届媒体建筑双年展会议论文集(澳大利亚悉尼)(MAB)。计算机协会,美国纽约,美国纽约,第10、4页。https://doi.org/10.1145/2946803.2946813 [5] Andreas Butz。 2010。 用于环境智能和智能环境的用户界面和HCI。 Springer US,马萨诸塞州波士顿,535-558。 2017。 2008。 2010。https://doi.org/10.1145/2946803.2946813 [5] Andreas Butz。2010。用于环境智能和智能环境的用户界面和HCI。Springer US,马萨诸塞州波士顿,535-558。2017。2008。2010。https://doi.org/10.1007/978-0-387-93808-0_20 [6] Ashley Colley,Lasse Virtanen,Pascal Knierim和JonnaHäkkilä。将无人机运动作为行人指导。在第16届移动和无处不在的多媒体国际会议论文集(德国斯图加特)(妈妈'17)。计算机协会,美国纽约,纽约,143-150。https://doi.org/10.1145/3152832.3152837 [7] Andy Crabtree和Tom Rodden。混合生态学:了解新兴物理数字环境中的合作互动。个人和无处不在的计算12,7(2008年10月),481–493。https://doi.org/10.1007/s00779-007-0142-7 [8] Peter Dalsgaard和Kim Halskov。 设计城市媒体立面:案例和挑战。 在Sigchi计算系统中人为因素会议论文集(美国佐治亚州亚特兰大)(CHI '10)。 计算机协会,美国纽约,纽约,2277–2286。 https://doi.org/10.1145/1753326.1753670 [9] Nigel Davies,Sarah Clinch和Florian Alt。 2014。 普遍显示:了解数字标牌的未来。 移动和普遍计算上的综合讲座8(2014),1-128。 https://doi.org/10.2200/s00558ed1v01y201312mpc011 [10]TanjaDöring,Axel Sylvester和Albrecht Schmidt。 2013。 短暂用户界面的设计空间。 在第七届国际有形,嵌入式和具体互动的国际会议上(西班牙巴塞罗那)(TEI '13)。 计算机协会,纽约,纽约,美国,75-82。 2010。 2016。 Ph.D.论文。https://doi.org/10.1007/s00779-007-0142-7 [8] Peter Dalsgaard和Kim Halskov。设计城市媒体立面:案例和挑战。在Sigchi计算系统中人为因素会议论文集(美国佐治亚州亚特兰大)(CHI '10)。计算机协会,美国纽约,纽约,2277–2286。https://doi.org/10.1145/1753326.1753670 [9] Nigel Davies,Sarah Clinch和Florian Alt。 2014。 普遍显示:了解数字标牌的未来。 移动和普遍计算上的综合讲座8(2014),1-128。 https://doi.org/10.2200/s00558ed1v01y201312mpc011 [10]TanjaDöring,Axel Sylvester和Albrecht Schmidt。 2013。 短暂用户界面的设计空间。 在第七届国际有形,嵌入式和具体互动的国际会议上(西班牙巴塞罗那)(TEI '13)。 计算机协会,纽约,纽约,美国,75-82。 2010。 2016。 Ph.D.论文。https://doi.org/10.1145/1753326.1753670 [9] Nigel Davies,Sarah Clinch和Florian Alt。2014。普遍显示:了解数字标牌的未来。移动和普遍计算上的综合讲座8(2014),1-128。https://doi.org/10.2200/s00558ed1v01y201312mpc011 [10]TanjaDöring,Axel Sylvester和Albrecht Schmidt。2013。短暂用户界面的设计空间。在第七届国际有形,嵌入式和具体互动的国际会议上(西班牙巴塞罗那)(TEI '13)。计算机协会,纽约,纽约,美国,75-82。2010。2016。Ph.D.论文。Ph.D.论文。https://doi.org/10.1145/2460625.2460637 [11]TanjaDöring。 以材料为中心的设计和评估有形用户界面。 在第五届有形,嵌入式和具体互动国际会议的会议录中(葡萄牙Funchal)(TEI '11)。 计算机协会,美国纽约,美国,437-438。 https://doi.org/10.1145/1935701.1935819 [12]TanjaDöring。 关于人类计算机相互作用的材料观点。 UniversitätBremen,德国不来梅。 [13] Marcus foth。 2015。 城市信息学超越数据:媒体架构,餐饮和公民行动。 在ACM会议记录中,关于使用城市信息学了解这座城市的第一个国际研讨会(澳大利亚墨尔本)(UCUI '15)。 计算机协会,美国纽约,美国,19。https://doi.org/10.1145/2811271.2818345 [14] M. Foth。 2017。 来自Urban Guerrilla餐厅的课程。 在第八届国际社区和技术会议论文集(法国特洛伊斯)(C和T '17)。 计算机协会,纽约,纽约,美国,32-35。 https://doi.org/10.1145/3083671。 3083707 [15] Marcus Foth和Glenda Amayo Caldwell。 2018。 超过人类媒体架构。 在第四届媒体建筑双年展会议论文集(中国北京)(MAB18)。 计算机协会,纽约,纽约,美国,66-75。 https://doi.org/10.1145/3284389.3284495 [16] Verena Fuchsberger。 2019。 未来的混合性质。https://doi.org/10.1145/2460625.2460637 [11]TanjaDöring。以材料为中心的设计和评估有形用户界面。在第五届有形,嵌入式和具体互动国际会议的会议录中(葡萄牙Funchal)(TEI '11)。计算机协会,美国纽约,美国,437-438。https://doi.org/10.1145/1935701.1935819 [12]TanjaDöring。 关于人类计算机相互作用的材料观点。 UniversitätBremen,德国不来梅。 [13] Marcus foth。 2015。 城市信息学超越数据:媒体架构,餐饮和公民行动。 在ACM会议记录中,关于使用城市信息学了解这座城市的第一个国际研讨会(澳大利亚墨尔本)(UCUI '15)。 计算机协会,美国纽约,美国,19。https://doi.org/10.1145/2811271.2818345 [14] M. Foth。 2017。 来自Urban Guerrilla餐厅的课程。 在第八届国际社区和技术会议论文集(法国特洛伊斯)(C和T '17)。 计算机协会,纽约,纽约,美国,32-35。 https://doi.org/10.1145/3083671。 3083707 [15] Marcus Foth和Glenda Amayo Caldwell。 2018。 超过人类媒体架构。 在第四届媒体建筑双年展会议论文集(中国北京)(MAB18)。 计算机协会,纽约,纽约,美国,66-75。 https://doi.org/10.1145/3284389.3284495 [16] Verena Fuchsberger。 2019。 未来的混合性质。https://doi.org/10.1145/1935701.1935819 [12]TanjaDöring。关于人类计算机相互作用的材料观点。UniversitätBremen,德国不来梅。 [13] Marcus foth。 2015。 城市信息学超越数据:媒体架构,餐饮和公民行动。 在ACM会议记录中,关于使用城市信息学了解这座城市的第一个国际研讨会(澳大利亚墨尔本)(UCUI '15)。 计算机协会,美国纽约,美国,19。https://doi.org/10.1145/2811271.2818345 [14] M. Foth。 2017。 来自Urban Guerrilla餐厅的课程。 在第八届国际社区和技术会议论文集(法国特洛伊斯)(C和T '17)。 计算机协会,纽约,纽约,美国,32-35。 https://doi.org/10.1145/3083671。 3083707 [15] Marcus Foth和Glenda Amayo Caldwell。 2018。 超过人类媒体架构。 在第四届媒体建筑双年展会议论文集(中国北京)(MAB18)。 计算机协会,纽约,纽约,美国,66-75。 https://doi.org/10.1145/3284389.3284495 [16] Verena Fuchsberger。 2019。 未来的混合性质。UniversitätBremen,德国不来梅。[13] Marcus foth。2015。城市信息学超越数据:媒体架构,餐饮和公民行动。在ACM会议记录中,关于使用城市信息学了解这座城市的第一个国际研讨会(澳大利亚墨尔本)(UCUI '15)。计算机协会,美国纽约,美国,19。https://doi.org/10.1145/2811271.2818345 [14] M. Foth。2017。来自Urban Guerrilla餐厅的课程。在第八届国际社区和技术会议论文集(法国特洛伊斯)(C和T '17)。计算机协会,纽约,纽约,美国,32-35。https://doi.org/10.1145/3083671。 3083707 [15] Marcus Foth和Glenda Amayo Caldwell。 2018。 超过人类媒体架构。 在第四届媒体建筑双年展会议论文集(中国北京)(MAB18)。 计算机协会,纽约,纽约,美国,66-75。 https://doi.org/10.1145/3284389.3284495 [16] Verena Fuchsberger。 2019。 未来的混合性质。https://doi.org/10.1145/3083671。3083707 [15] Marcus Foth和Glenda Amayo Caldwell。2018。超过人类媒体架构。在第四届媒体建筑双年展会议论文集(中国北京)(MAB18)。计算机协会,纽约,纽约,美国,66-75。https://doi.org/10.1145/3284389.3284495 [16] Verena Fuchsberger。 2019。 未来的混合性质。https://doi.org/10.1145/3284389.3284495 [16] Verena Fuchsberger。2019。未来的混合性质。互动26,4(2019),26-31。https://doi.org/10.1145/3328481 [17] Verena Fuchsberger,Martin Murer,Thomas Meneweger和Manfred Tscheligi。2014。捕获交互式工件和用户之间的内在:一种以物质性为中心的方法。在第八届北欧人类计算机互动会议论文集:娱乐,快速,基础(芬兰赫尔辛基)(芬兰)(Nordichi '14)。计算机协会,美国纽约,美国,451–460。https://doi.org/10.1145/2639189.2639219 [18] Verena Fuchsberger,Martin Murer,Daniela Wurhofer,Thomas Meneweger,Thomas Meneweger,Katja Neuroiter,Katja Neuroiter,Alexander Meschtschtscherjakov,Alexchtschtscherjakov和Manfred tschiligi。 2014。 多层物质性。 在2014年同伴设计有关设计交互式系统的会议记录中-14。 ACM出版社,加拿大温哥华,卑诗省温哥华,73-76。 https://doi.org/10.1145/2598784.2602785 [19] Mojgan Ghare,Marvin Pafla,Caroline Wong,James R. Wallace和Stacey D. Scott。 2018。 通过与公共大型交互式展示互动来增加路人:对近亲和锥体的研究。 在2018年ACM国际交互式表面和空间国际会议论文集(日本东京)(ISS '18)。 计算机协会,纽约,纽约,美国,19-32。 https://doi.org/10.1145/3279778.3279789 [20] Elisa Giaccardi和Elvin Karana。 2015。 材料基础经验:HCI的方法。 在第33届年度ACM人为因素会议论文集(韩国首尔)(CHI '15)。https://doi.org/10.1145/2639189.2639219 [18] Verena Fuchsberger,Martin Murer,Daniela Wurhofer,Thomas Meneweger,Thomas Meneweger,Katja Neuroiter,Katja Neuroiter,Alexander Meschtschtscherjakov,Alexchtschtscherjakov和Manfred tschiligi。2014。多层物质性。在2014年同伴设计有关设计交互式系统的会议记录中-14。ACM出版社,加拿大温哥华,卑诗省温哥华,73-76。 https://doi.org/10.1145/2598784.2602785 [19] Mojgan Ghare,Marvin Pafla,Caroline Wong,James R. Wallace和Stacey D. Scott。 2018。 通过与公共大型交互式展示互动来增加路人:对近亲和锥体的研究。 在2018年ACM国际交互式表面和空间国际会议论文集(日本东京)(ISS '18)。 计算机协会,纽约,纽约,美国,19-32。 https://doi.org/10.1145/3279778.3279789 [20] Elisa Giaccardi和Elvin Karana。 2015。 材料基础经验:HCI的方法。 在第33届年度ACM人为因素会议论文集(韩国首尔)(CHI '15)。ACM出版社,加拿大温哥华,卑诗省温哥华,73-76。https://doi.org/10.1145/2598784.2602785 [19] Mojgan Ghare,Marvin Pafla,Caroline Wong,James R. Wallace和Stacey D. Scott。2018。通过与公共大型交互式展示互动来增加路人:对近亲和锥体的研究。在2018年ACM国际交互式表面和空间国际会议论文集(日本东京)(ISS '18)。计算机协会,纽约,纽约,美国,19-32。https://doi.org/10.1145/3279778.3279789 [20] Elisa Giaccardi和Elvin Karana。 2015。 材料基础经验:HCI的方法。 在第33届年度ACM人为因素会议论文集(韩国首尔)(CHI '15)。https://doi.org/10.1145/3279778.3279789 [20] Elisa Giaccardi和Elvin Karana。2015。材料基础经验:HCI的方法。在第33届年度ACM人为因素会议论文集(韩国首尔)(CHI '15)。计算机协会,美国纽约,纽约,2447–2456。