内森·瓦格纳中校原籍肯塔基州,但在南卡罗来纳州长大。从克莱姆森大学获得微生物学理学学士学位后,他被任命为医疗服务团少尉。瓦格纳中校之前的职务包括第 261 区域支援医疗营医疗行动官;第 36 区域支援医疗连治疗排长兼执行官;第 32 医疗后勤营(前进)S4 营;第 44 医疗司令部后勤计划和行动官;联合特种作战司令部和联合医疗增强部队 J4 医疗后勤官;第 6 医疗后勤管理中心支队指挥官兼中央司令部分部负责人;美国陆军医疗物资局行动官;第 18 空降军医疗后勤主管;第 28 战斗支援医院/第 16 医院中心执行官;第 44 医疗旅 S4 旅;以及美国陆军医疗部巴伐利亚活动部后勤主管。他目前担任陆军军医局总部政策与部队整合主任的执行官以及美国陆军医疗司令部 G-3/5/7 作战副参谋长。Wagner 中校已完成七次前往伊拉克、阿富汗和非洲之角的作战部署,以支持“持久自由行动”、“伊拉克自由行动”和“坚定决心行动”。Wagner 中校的军事教育包括 AMEDD 军官基础课程、AMEDD 上尉职业课程、指挥和参谋军官课程、卫生服务物资军官课程、支援行动课程、反恐军官课程、空降学校、SERE C 级(高风险)和跳伞长学校。他还获得了健康和工商管理硕士学位,并且是陆军采购团 II 级成员,获得项目管理认证。他获得的奖章包括带一簇橡树叶的铜星勋章、国防功绩勋章、带四簇橡树叶的功绩勋章、带两簇橡树叶的陆军嘉奖勋章、联合服役成就勋章、带一簇橡树叶的陆军成就勋章、国防服役勋章、阿富汗战役勋章(一颗战役之星)、伊拉克战役勋章(四颗战役之星)、全球反恐战争远征勋章(一颗战役之星)、全球反恐战争服役勋章、北约勋章、专家野战医疗徽章、高级跳伞员徽章和荷兰皇家陆军跳伞员徽章。他还是军事医疗功绩勋章的成员。
1 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA 2 Department of Applied Physics and Physics, Stanford University , Stanford, California 94305, USA 3 Geballe Laboratory for Advanced Materials, Stanford University , Stanford, California 94305, USA 4 Department of Physics, University of California , Berkeley, California 94720, USA 5 Donostia International Physics Center , 20018 Donostia-San Sebastián, Spain 6 Physics Department, University of the Basque Country (UPV/EHU) , Bilbao, Spain 7 Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, Dresden, Germany 8 Advanced Light Source , Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 9宾夕法尼亚州立大学物理系,宾夕法尼亚大学公园16802,美国10物理与天文学系,赖斯大学,德克萨斯州休斯敦市莱斯大学77005,11 Stanford Synchrotron Radiation Lightsiled Lightsce,Slac National Accelerator slac National Accelorator Laborator,Menlo Park,California 94025,US 12 Max Pallans 7德国
Takeshi KOSUGI *****、Yusuke ICHIKAWA *****、Takayuki UKAI ***** 和 Toshiki KASAHARA *****
量子力学系统的希尔伯特空间可以具有非平凡几何,这一认识导致人们在单粒子和多粒子量子系统中发现了大量新奇现象。特别是,与单粒子波函数相关的几何考虑导致了非相互作用拓扑绝缘体 (TI) 的最初发现和最终分类 [1 – 4] ,以及对这些相中缺陷相关特性的研究 [5 – 8] 。另一方面,在分数量子霍尔系统 (FQHS) [9,10] 和分数陈绝缘体 (FCI) [11,12] 的框架内,研究了拓扑与占据非平凡单粒子态的粒子间相互作用之间相互作用所产生的迷人物理。然而,由于后者的关联性质,建立单粒子和多粒子层面上非平凡几何的作用之间的直接关系一直很困难。在本文中,我们展示了二维 (2D) 单粒子能带结构的非平凡几何与相关 Bardeen-Cooper-Schrieffer (BCS) 超导体的响应特性之间的明确联系 [13] 。特别地,我们表明,在用大质量狄拉克模型描述正常态的二维系统中,超导态遵循修改的通量量子化条件,从而产生分数通量涡旋以及非常规约瑟夫森响应。必须强调的是,超导态与正常态没有扰动关系。但是,正如我们在下面所展示的,使用 BCS 变分假设可以处理相变两侧的几何作用。流形量子化源于这样一个事实:在块体超导体内部深处,序参量的整体相位是恒定的。在传统的
ICTP 主任 Atish Dabholkar 谈论量子纠缠以及 ICTP 的工作 ICTP 主任 Atish Dabholkar 谈论量子纠缠以及 ICTP 的工作
代数方式:克利福德、海森堡和狄拉克对量子基础的遗产。BJ Hiley。2024 年 3 月 1 日摘要。罗杰·彭罗斯两周前的演讲得出结论,广义相对论(等效原理)和量子力学(叠加原理)的基本原理之间的冲突导致了两个现实,一个是经典的,一个是量子的。该论点基于薛定谔图景。在这次演讲中,我着手表明,如果使用海森堡图景,那么只有一个现实。论证从海森堡群结构开始,该结构具有经典和量子域的基本正交和辛对称性。克利福德认识到群在古典物理学中的作用,它在产生众所周知的正交泡利、狄拉克和彭罗斯扭子代数方面起着根本性的作用。辛对称性隐藏在冯·诺依曼的一篇被忽视的论文中,而冯·诺依曼实际上发现了 Moyal 星积代数。冯·诺依曼的论文导致了 Stone-von Neumann 定理,该定理表明,各种图像、薛定谔、海森堡、相互作用等在幺正变换下是等价的。我将展示 Bohm 版本的非相对论薛定谔方程是如何从星积代数中产生的。该乘积必然会引入一种新的能量质量,即“量子势能”,DeWitt (1952) 表明其几何起源与标量曲率张量有关。该结构揭示了共形重标度出现背后的原因,希望能够更好地理解静止质量问题。