摘要 量子密钥分发可以提供信息论安全的密钥。实际应用中,窃听者可能会攻击传输的量子态,从而将一些信息泄露给生成的密钥。最终密钥的安全性取决于窃听者猜测密钥的难易程度。猜测概率受实际生成的量子态与理想量子态之间的迹距离所约束,因此可以用来估计量子密钥分发的安全性。利用迹距离ε和密钥长度n,我们证明了在某些特殊情况下猜测概率可达到上限ε + 2 − n。我们证明了不同的攻击策略会给出不同数量的猜测,有时甚至是完全颠覆性的差异,以得到最终密钥。我们的结果表明,应谨慎选择适当的安全参数ε以保证生成密钥的安全性。
摘要 — 平均而言,正确猜测随机变量的实现需要的最少猜测次数是多少?这个问题的答案导致 Massey 在 1994 年引入了一个称为猜测的量,它可以被视为熵的替代安全标准。在本文中,我们考虑了存在量子边信息的情况下的猜测,并表明一般的顺序猜测策略等同于执行单个量子测量并根据结果选择猜测策略。我们利用这个结果推导出存在量子边信息的情况下猜测的熵一次性和渐近界,并制定了一个半定程序 (SDP) 来计算这个量。我们对涉及 BB84 状态的简单示例进行了数值和分析评估,并证明了一个连续性结果,当使用猜测作为安全标准时,该结果证明了略微不完善的密钥状态的安全性。
摘要。基于密码的身份验证是最终用户安全性的中心工具。作为此的一部分,密码哈希用于确保静止密码的安全性。如果量子计算机以足够的大小可用,则能够显着加快哈希函数的预计数的计算。使用Grover的算法,最多可以实现平方根的速度,因此可以预期,量子通行证猜测也可以接收正方形的加速。但是,密码输入不是均匀分布的,而是高度偏差。此外,典型的密码攻击不仅会损害随机用户的密码,而且要解决数百万用户数据库中所有用户密码的很大一部分。在这项工作中,我们第一次研究那些量子大规模密码猜测。与经典攻击相比,当攻击所有密码的恒定分数时,我们仍然会在量子设置中获得平方根的加速,甚至考虑了强烈偏见的密码分配,因为它们出现在现实世界密码漏洞中。我们使用LinkedIn泄漏验证了理论预测的准确性,并为量子计算机时代的密码哈希和密码安全提供了特定建议。
有些问题的答案非常相似或几乎相同,除了一个细节。这应该是你从两个相似的答案中选择一个的线索。相似的选项不可能都是正确的,但其中一个可能是正确答案。
