可戴式计算领域的这些最新进展正在彻底改变我们与技术互动的方式,并扩大智能系统无缝集成到我们日常生活中的潜力。苹果于 2016 年推出了首款获得商业成功的 TWS 耳机 [ 2 ],并被誉为 TWS 市场的开创者。现在,支持 ANC 的耳机的份额正在飙升 [ 3 ]。ANC 耳机为可戴式计算带来了新的亮点。ANC 耳机在耳罩内放置一个反馈麦克风,以感应用户听到的环境噪音。由于这个麦克风听到的噪音与人听到的噪音相似,因此 ANC 电路可以在将结果信号发送到耳机扬声器之前产生抗噪效果。为了改善降噪效果,ANC 耳机进一步利用耳罩外部的前馈麦克风与反馈麦克风协同工作以扩展 ANC 带宽。反馈和前馈麦克风为许多传感应用开辟了新的机遇。例如,当耳机与人耳紧密密封时,就会产生耦合效应 [10],大大放大耳道中的低频声音。因此,许多可听设备的健康功能可以通过用反馈麦克风被动记录通过耳道传播的身体引起的振动来实现。这一想法在学术界得到了广泛的利用,引发了许多令人兴奋的移动应用,包括心率感应、耳部疾病诊断、呼吸感应、身体活动识别等 [11, 12, 15, 18]。除了上述感知耳戴设备的好处之外,耦合效应是入耳式耳塞可以为音乐播放产生足够的低音响应的根本原因。然而,这种耦合效应是可听设备的致命弱点,它放大了本来就过多的低频声音,例如由于身体运动和风引起的声音,使自己的讲话听起来不自然。当 ANC 电路拾取环境中放大的低频噪声时,这种低频噪声会使麦克风饱和,显著降低目标信号的动态范围,产生可听见的伪影,并使 ANC 电路变得不稳定。不幸的是,低频噪声会损害 ANC 性能,影响音频质量,甚至使 ANC 耳塞产生高音调的啸叫噪声。在本文中,我们将描述 ANC 耳机中常用的解决此问题的解决方案如何影响使用 ANC 麦克风子系统的可听式传感系统。需要指出的是,行业中用于调解这些影响以优化 ANC 性能、透明模式性能和语音拾取的解决方案可能会对社区提出的许多算法产生负面影响。过去,这些算法从未向可听式计算社区透露过。此外,经常被耳塞社区忽视,