1 Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy 2 Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy 3 Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Chemical Department, Via P. Fiorini 5, 40127 Bologna,意大利4新生儿学和NICU,临床和实验医学系,56126,意大利PISA 5 56126 PISA实验与临床医学系的妇产科和妇科第1单元,意大利PISA 56126 PISA,意大利6妇产科和妇产科2,PISA University Hosporty,Persologicy of Pathologicy of Pathologicy of Pathologicy of 56126 PISA,PISA,PISA,ITALY 7。大学医院,意大利PISA 56126 8欧洲癌症与环境研究所(ECERI),1000比利时,比利时9号,Cagliari大学外科科学系和新生儿重症监护室和Neonatal重症监护室,Aou Cagliari,Aou Cagliari,09124 Cagliari,Italy Cagliari,Italy Italy 10 9124 ITALY STROCATION ITALY SECUDATION,PISA HOSTECATY HOSSICAL,PIS A SOFFESSION HOSSICAL,PISA HOSTERCE *,PISA HOSTERCE * 661,PIS,566 PIS,566 PIS: lucia.migliore@unipi.it†这些作者为这项工作做出了同样的贡献。
1 免疫学-疫苗学,传染病和寄生虫病系,动物与健康基础与应用研究(FARAH),列日大学兽医学院,B-4000 列日,比利时 2 斑马鱼发育与疾病模型实验室,GIGA-疾病分子生物学,列日大学,B-4000 列日,比利时 3 MRC-格拉斯哥大学病毒研究中心,格拉斯哥 G61 1QH,英国 4 UMR-I 02 环境应激与水环境生物监测(SEBIO),UFR 精确与自然科学,兰斯香槟阿登大学,CEDEX 2,51687 兰斯,法国 5 香农理工大学生物科学研究所, N37 HD68 阿斯隆,韦斯特米斯郡,爱尔兰 * 通信地址:owen.donohoe@uliege.be (OD);a.vdplasschen@uliege.be (AV);电话:+32-4-366-43-79 (OD);+32-486-45-13-53 (AV) † 这些作者对本文的贡献相同。
植物和微生物释放介导根际宿主 - 微生物相互作用并调节植物对环境应激的适应性的代谢产物。然而,根际代谢产物 - 微生物组动力学及其功能和生物学意义的机制在很大程度上尚不清楚。我们的研究表明,某些类型的根际代谢产物对非生物应激源表现出反应,并且与根际微生物群落和植物表型的变化有关。我们建议,一组缺乏的根际化合物可以充当基石代谢物,从而影响根际微生物组的组成,并可能调节植物代谢,以响应养分可用性。这些发现证明了利用植物 - 代谢产物 - 微生物相互作用的巨大潜力,以优化根际微生物组功能,促进植物和生态系统健康,并为土壤微生物组研究提供广泛的途径。
蛋白酶在原核生物和真核生物中都起着无处不在的作用。在植物中,这些酶在多种生理过程中充当关键调节剂,侵蚀性蛋白质瘤,细胞器开发,衰老,播种,蛋白质加工,环境应激反应,环境应激反应和程序性细胞死亡。蛋白酶的主要功能涉及肽键的分解,导致蛋白质的不可逆翻译后修饰。它们还充当信号分子,最终调节细胞活性,分别分裂并激活了脱肽。此外,蛋白酶通过将错误折叠和异常蛋白质降解为氨基酸而导致细胞修复机制。此过程不仅有助于细胞损伤修复,而且还可以调节生物学对环境压力的反应。蛋白酶在植物素的生物发生中也起着关键作用,该植物激素的生长,发育和对环境挑战的反应(Moloi和Ngara,2023年)。现代农业努力满足由于气候变化和人口迅速增长而导致的粮食,饲料和原材料需求的增加。气候变化是对作物产量潜力产生负面影响的主要因素。在植物防御生化机制内部,蛋白水解酶是几种生理过程的关键调节剂,包括环境应激反应。与动物不同,植物不具有带有移动防御者细胞的自适应免疫系统,因此它们具有通过激活触发生理,形态和生化变化的不同保护机制来适应和适应环境条件的策略。
摘要:近年来,气候变化的问题在全球范围内都提高了人们的意识和关注。它对世界各地的生态系统产生了各种影响,导致许多物种在环境上受到压力。表观遗传学是一个关于气候变化的概念,正在更普遍地研究。由于环境的变化,可能会出现压力引起的遗传性状,而不会改变基因组代码(称为表观遗传学改变)。这样的表观遗传改变是DNA甲基化,它发生在细胞对环境应激的反应中。菲律宾负担得起的蛋白质的一个主要来源来自野生圆形SCAD鱼,该鱼的人口和体型最近都面临着迅速下降的速度。我们研究的目的是探索野生圆形SCAD中DNA甲基化的模式,以确定这些变化是否与对全球气候压力的表观遗传反应有关。收集圆形SCAD DNA的样品并从菲律宾分离出来。使用纳米孔小牛仔群(一种便携式第三代DNA测序技术),我们能够获得检测甲基化位点所需的高质量DNA序列。但是,DNA序列短,需要改进。为了促进我们的分析,我们正在测序斑马鱼的基因组以进行比较。在这里,我们将报告收集的初始数据。我们预计,该项目的长期发现将提供关键的信息,以管理面对类似环境压力源的野生圆形SCAD和其他海洋鱼类。
综合应激反应 (ISR) 是细胞保护自己免受环境应激的重要机制。ISR 的核心是一组监测应激条件的相关蛋白激酶,例如 Gcn2 (EIF2AK4) 可识别营养限制,诱导真核翻译起始因子 2 (eIF2) 的磷酸化。Gcn2 磷酸化 eIF2 可降低大部分蛋白质合成,节省能量和营养,同时优先翻译应激适应基因转录本,例如编码 Atf4 转录调节因子的转录本。虽然 Gcn2 对细胞保护免受营养应激至关重要,并且其在人类中的消耗会导致肺部疾病,但 Gcn2 还可能导致癌症进展并在慢性应激期间促进神经系统疾病。因此,已经开发出特定的 ATP 竞争性 Gcn2 蛋白激酶抑制剂。在本研究中,我们报告了一种这样的 Gcn2 抑制剂 Gcn2iB 可以激活 Gcn2,并且我们探究了这种激活发生的机制。低浓度的 Gcn2iB 会增加 eIF2 的 Gcn2 磷酸化并增强 Atf4 的表达和活性。重要的是,Gcn2iB 可以激活缺乏功能性调节域或具有某些激酶域替换的 Gcn2 突变体,这些突变体源自缺乏 Gcn2 的人类患者。其他 ATP 竞争性抑制剂也可以激活 Gcn2,尽管它们的激活机制有所不同。这些结果为 eIF2 激酶抑制剂在治疗应用中的药效学提供了警告。旨在直接激活 Gcn2 的激酶抑制剂化合物,甚至是功能丧失的变体,可以提供缓解 Gcn2 和 ISR 其他调节剂缺陷的工具。