本文重点介绍了位置准确性低的问题和在复杂环境中移动机器人的不良环境感知性能。它基于IMU和GP的机器人姿势信息和环境知觉信息进行了关键的技术研究,以检测机器人自己的姿势信息,以及激光雷达和3D摄像头,以感知环境信息。在“姿势信息融合层”中,粒子群处理算法用于优化BP神经网络。没有偏见的卡尔曼过滤,并实现了未经意识的卡尔曼滤波器,以实现INS-GPS松散耦合导航,从而减少了INS组件IMU的偏见和噪声。此外,当GPS信号丢失发生时,训练有素的神经网络可用于输出预测信息,以进行惯性导航系统的错误校正,提供更准确的速度,并将信息作为绝对位置约束。在环境感知融合层中,补偿的IMU预一整合性调查分别与次要水平分别与视觉探光仪和激光镜探测融合。这使机器人的实时精确定位和环境图的更精细结构。最后,使用实际收集的轨迹来验证算法,以进行multi传感器信息的两级融合。实验结果表明,该算法提高了机器人的定位准确性和环境感知性能。机器人运动轨迹和原始真实轨迹之间的最大误差为1.46 m单位,而最小误差为0.04 m单位,平均误差为0.60 m。
除了环境感知传感器(例如摄像机,雷达等)。在自动驾驶系统中,人们可以感知车辆的外部环境,实际上,也有一个感知传感器在系统中默默地专用,即定位模块。本文探讨了自动驾驶汽车的自动巷改变行为预测和环境感知的猛烈(同时定位和映射)技术的应用。它讨论了传统定位方法的局限性,引入了大满贯技术,并将激光雷达的大满贯与视觉大满贯进行了比较。来自特斯拉,Waymo和Mobileye等公司的现实世界实例展示了AI驱动技术,传感器融合和在自动驾驶系统中的集成。随后,纸张研究了SLAM算法,传感器技术的细节,以及自动车道变化在驾驶安全性和效率方面的重要性。它突出显示了特斯拉对其自动驾驶系统的最新更新,该系统结合了使用SLAM技术的自动车道更改功能。本文结论是强调SLAM在实现自动驾驶汽车的准确环境感知,定位和决策中的关键作用,最终增强了安全性和驾驶经验。
摘要 - 大型和高质量的培训数据集对于深度学习至关重要。在无人机空中图像的语义分割挑战的背景下,我们提出了一种数据增强策略,该策略可以大大减少手动注释大量图像的努力。结果是一组语义,深度和RGB图像,可用于改善神经网络的性能。该方法的主要重点是生成语义图像,并且在整个过程中也生成了深度和纹理图像。提出的语义图像产生方法依赖于现实环境的3D语义网格表示。首先,我们将现有的语义信息从简化的手动标记图像集中传播到网格表示中。要处理手动标记的图像中的错误,我们为传播过程提出了一种特定的加权投票机制。第二,我们使用语义网络创建新图像。这两个步骤都使用透视投影机制和深度缓冲算法。可以使用不同的相机方向生成图像,从而允许新颖的视角。我们的方法在概念上是一般的,可用于改善各种现有数据集。对使用该方法进行增强的现有数据集(UAVID和WILDUAV)进行的实验是在HRNET上进行的。获得了推理结果的总体绩效提高高达5.5%(MIOU)。增强数据集在GitHub 1上公开可用。索引术语 - 语义图像,无人机,数据增强,图像生成,空中图像,Z-Buffer,深度缓冲区,透视投影,虚拟相机。