一系列卡宾-金-乙炔配合物 [(BiCAAC)AuCC] n C 6 H 5 − n ( n = 1,Au1;n = 2,Au2;n = 3,Au3;BiCAAC = 双环(烷基)(氨基)卡宾) 已被高产率合成。化合物 Au1–Au3 呈现深蓝色至蓝绿色磷光,在所有介质中量子产率高达 43%。金配合物 Au1–Au3 中 (BiCAAC)Au 部分的增加会增加紫外可见光谱中的消光系数和更强的振子强度系数,理论计算支持这一点。发光辐射速率随着 (BiCAAC)Au 部分的增加而降低。时间相关密度泛函理论研究支持磷光的电荷转移性质,这是因为单重态(S 1 )和三重态(T 1 )之间的能隙很大(0.5–0.6 eV)。瞬态发光研究揭示了非结构化紫外瞬时荧光和 428 nm 振动分辨长寿命磷光的存在。有机发光二极管 (OLED) 采用物理气相沉积法制成,以 2,8-双(二苯基磷酰基)二苯并[b,d]呋喃 (PPF) 作为主体材料,与复合物 Au1 反应。在 405 nm 处观察到近紫外电致发光,器件效率为 1%,同时在 10 尼特的实际亮度下 OLED 器件寿命 LT 50 长达 20 分钟,表明一类非常有前景的材料可用于开发稳定的紫外 OLED。
背景:1型糖尿病(T1DM)是一种慢性自身免疫性条件,由于氧化应激和代谢失调,可能导致长期并发症。二氧酶-1(PON-1)是一种与高密度脂蛋白(HDL)相关的酶,具有双重活性:芳基酯酶和乳糖酶。这些活动可保护脂质免受氧化损伤。T1DM儿童中PON-1的功能状态可以提供有关氧化应激与酶保护作用之间关系的见解。本研究旨在评估伊拉克T1DM儿童中PON-1的芳基酯酶和乳糖酶活性。方法:招募了67名T1DM的儿童,并与57个年龄匹配的健康对照组进行了比较。测量芳基酶和lactonase的酶促活性以评估PON-1的功能状态。计算二氧化氧酶-1/HDL(PON/HDL)比例以评估脂质保护和抗氧化能力。氧化状态。结果:PON-1活性分析显示,患者组的芳基酶(2.36±1.17)和乳糖酶(21.9±7.31)显着降低,与对照组相比(芳基酶= 4.54±1.84,lactonase = 29.51±9.92)。TOS和OSI明显更高,而患者组的TA则显着降低。Pearson相关性显示HDL-C和芳基酶之间存在正相关(P = 0.002,r = 0.379),HDL-C和LACTONAPE(P = 0.040,r = 0.366)。结论:降低的PON-1活性与T1DM有关,表明增强PON-1或减少氧化应激可能有助于预防糖尿病并发症并改善心血管健康。关键字:抗氧化活性,二氧化烷酶-1,芳基酶,乳糖酶,氧化损伤,I型糖尿病。
作者对原始稿件中遗漏通讯作者王荣芳的电子邮件地址深表遗憾。王荣芳的电子邮件地址为 rfwang@qust.edu.cn。英国皇家化学学会对这些错误以及由此给作者和读者带来的任何不便深表歉意。
Maire Yew(Taxus Mairei)是常绿针叶树,具有较高的装饰性和药用价值。该物种的芳族具有三种不同的颜色。然而,尚不清楚香气颜色形成的变化机制。在此,在不同发育阶段,基因表达和代谢产物浓度是红色(RTM),黄色(YTM)和紫色(PTM)芳族的促进的。总共确定了266个烟叶和35个类胡萝卜素。在YTM中鉴定的主要色素是Epiafzelechin,le曲霉和B-氯蛋白细胞素,而Malvidin-3,5-Di-O-葡萄糖苷和apigenin在PTM中起着至关重要的作用。和显着的差异表达在HCT,DFR,LAR,ANS,CRTB,NCED和CCOAOMT基因之间观察到了不同颜色的环境。在黄色的青春期成熟期间,HCT的上调与Epiafzelechin的积累密切相关。DFR,LAR和ANS的表达降低似乎抑制了Delphinidin-3-O-Rutinoside的产生。CRTB表达的降低和NCED表达的同时增加可能调节叶黄素的积累。同时,B -Cryptoxanthin的积累似乎受到NCED的积极影响。作为紫色的Aril转向,CCOAOMT的表达降低似乎有助于丙菊的合成。DFR的重大上调促进了Malvidin-3,5-Di-O-葡萄糖苷的产生。此外,MYB的过表达可能在调节不同彩色贫困的形成中起重要作用。总共选择了14个基因进行QRT-PCR验证,结果表明转录组序列数据的可靠性。我们的发现可以为Maire紫杉资源的分子育种,开发和应用提供宝贵的见解。
随着生物甲烷扇形发展的发展,其在天然气网络中的注入增加,包括地质储藏。 在注射之前,添加O 2以消除Suldes。 在地质存储中预计O 2的共同注入(可接受的100 ppm的限制),例如深含水层,这些含水层含有自动微生物。 此O 2严格威胁着厌氧微生物及其来自天然气存储的单芳族烃的生物降解活性。 模拟深含水层条件的多学科研究对于conte或适应O 2的授权限制至关重要。 我们的研究没有显示含水岩石(矿物质和孔隙率)的主要修饰,而是社区多样性的含量,消除了耐药性较低的含量,并产生了新的平衡,从而允许苯降解。随着生物甲烷扇形发展的发展,其在天然气网络中的注入增加,包括地质储藏。在注射之前,添加O 2以消除Suldes。在地质存储中预计O 2的共同注入(可接受的100 ppm的限制),例如深含水层,这些含水层含有自动微生物。此O 2严格威胁着厌氧微生物及其来自天然气存储的单芳族烃的生物降解活性。模拟深含水层条件的多学科研究对于conte或适应O 2的授权限制至关重要。我们的研究没有显示含水岩石(矿物质和孔隙率)的主要修饰,而是社区多样性的含量,消除了耐药性较低的含量,并产生了新的平衡,从而允许苯降解。
采用JENWAY公司生产的UV/Vis 6850分光光度计对化合物的结构进行了定性研究。灵敏度高,二元分光光度法操作范围为190~1100nm,装置的光放电率为0.1nm。以汞和白炽灯为激发源。研究在室温下进行,以三氯乙烷为溶剂。将所得溶液和标准具倒入1cm矩形石英管中,并插入紫外分光光度计的适当窗口前,获取样品的光谱。在S3样品的紫外光谱中,在215nm处观察到咪唑环的两个吸收带中的一个,强度较小。低强度与连接咪唑的基团有关。因此,该吸收带属于核电子系统的π-π*跃迁。在 330 nm 处记录了氮未分割电子对的 n-π 跃迁的第二条吸收谱带,强度较高。氯与芳环的连接导致舟铬滑动,这在第二条吸收谱带上基本得到显示。C 6 H 4 Cl 基团在 200 和 235 nm 处,在 260、345 和 360 nm 波长处测定了属于菲基团的吸收谱带。在可见光区(535 nm)观察到了二苯基重氮基团的吸收谱带。影响滑动的因素之一是溶剂是多芳基化合物。
g-cn是一个非特异性的术语,它包括一个相当广泛的材料家族,由石墨层和/或富含N型芳族环的聚合物链组成。单体单元由1,3,5-三嗪[2]或三嗪(也称为己嗪)部分由SP 3杂交N原子连接起来。[3]氮的原子C/N比有很大的变化,例如,对于理想的石墨结构,其对应于0.75,而对于更现实的(和讨论)的三嗪单元结构,理论C/N原子比为0.67,而C/H ATOMIC比率为2.0。cn仅包含地球丰富的元素碳,氮和氢,可以从廉价且易于获得的前体合成,并且具有较高的化学和热稳定性,这是由于共轭层结构中成分之间的强相价键。由于广泛的共轭,CN在电磁频谱的可见区域吸收,带隙为2.7 eV(= 460 nm),并且已成功地用于催化广泛的反应。由于所有这些原因,G-CN迅速成为当前光催化研究的主要参与者。[4]
代表着一种更可靠、更安全、生命周期更长的替代方案。通过湿纺技术成功获得了许多由石墨烯、碳纳米管、导电聚合物以及最近的 MXenes 制成的纤维,并研究将其作为可穿戴超级电容器的一维电极。[17–29] 然而,这些材料通常涉及复杂的合成程序、有害的分散剂溶剂或后处理步骤,以生产出具有足够机械阻力和电化学性能的纤维。芳族聚酰胺纳米纤维 (ANF) 最近被提议作为一种新的纳米级构建块来设计新的复合材料。[30] 与基于单体聚合的标准路线相反,ANF 可以通过自上而下的方法轻松快速地获得,通过溶解芳族聚酰胺聚合物链,然后通过溶液加工重新组装成宏观纤维或薄膜。[30,31] 芳族聚酰胺聚合物以其机械强度而闻名,但它不导电,必须负载导电填料才能实现电子传输。到目前为止,ANF 主要被研究用作聚合物增强体的填料[32,33]、多功能膜的基质[34–37]、隔热罩[38,39],甚至用作隔膜的添加剂和锂离子电池的固态电解质。[40,41] 然而,尽管 KNF 分散体具有良好的湿纺性,但人们对使用 ANF 来制造 FSC 却关注甚少。在之前的工作中,Cao 等人通过共湿纺核碳纳米管分散体和鞘 ANF 分散体制备了具有核壳结构的纤维。[42] 通过用 H3PO4/PVA 凝胶电解质渗透获得的对称 FSC 显示出高达 0.75 mF cm −1 的显著线性容量。Wang 等人将石墨烯纳米片 (GNPs) 加载到 ANF 分散体中,通过在水/乙酸溶液中凝固获得 ANFs/GNPs 复合线状电极。[43] 然而,他们的结果表明,GNPs 通过恢复对苯二甲酰胺单元之间的氢键干扰了 ANFs 的凝固,导致在 ANFs 基质中 GNPs 高含量时拉伸强度持续下降。在这项工作中,PEDOT:PSS@KNFs 复合纤维通过一个简单的两步工艺生产出来,包括将 Kevlar 纳米纤维化为 Kevlar 纳米纤维 (KNF)、KNF 纤维的湿纺以及随后浸泡在 PEDOT:PSS 水分散体中。以这种方式,由于导电的 PEDOT:PSS 链渗透而几乎保持 KNF 基质的机械阻力不变,因此获得了导电纤维。 PEDOT:PSS@KNF 纤维具有柔韧性、可编织、可缝纫等特点,通过耦合相邻的两根纤维,可以形成对称的 FSC。
单元-V 1。羧酸和衍生物6 h命名法,羧酸的分类和结构。通过a)a)氮水解的制备方法,酰胺b)用酸和碱水解酯的水解,并具有机制c)碳化剂的碳化。通过a)侧链氧化制备芳香酸的特殊方法。b)苯二氯化物的水解。c)kolbe反应。物理特性:氢键,二聚体缔合,酸的酸度 - 三甲基乙酸和三氯乙酸的实例。芳族和脂肪族酸的酸度的相对差异。化学特性:涉及H,OH和COOH基团的反应 - 盐的形成,甲基藻形成,酸氯化物形成,酰胺形成和酯化(机制)。通过huns-diecker反应,schimdt反应,arndt-eistert合成,地狱沃尔哈德·泽林斯基反应的卤化,羧酸降解。