简介。— 生成非经典玻色子态 [1 – 3],例如压缩光、福克态和薛定谔猫态,不仅对量子力学的基础研究很重要,而且对量子技术的应用也很重要 [2,4 – 6]。例如,相空间中具有离散平移或旋转对称性的玻色子态 [7 – 14] 已被提议用于编码量子信息 [15 – 20],为硬件高效的量子纠错铺平了道路 [21 – 24]。可以通过例如交错的选择性数字相关任意相位 (SNAP) 和位移门 [25 – 27] 来制备和稳定玻色子代码态以防止耗散。最近的一系列研究 [28 – 31] 指出了一种基于汉密尔顿工程的替代被动控制方法,该方法可用于促进容错操作,例如通过抑制相位翻转错误 [28]、动态抑制与环境的耦合 [30] 以及加速代码字的状态准备 [31] 。汉密尔顿工程的另一个感兴趣领域是拓扑。由于相空间的非交换性质,在封闭的相空间环上移动的量子粒子获得类似于磁场中粒子的 Aharonov-Bohm 相的几何相。因此,相空间中的带隙格子汉密尔顿可以支持非平凡的陈数 [16,32 – 40] 。这是一个很有吸引力的特性,因为在具有物理边界的系统中,它将导致拓扑稳健的边缘传输。虽然已经展示了如何生成
搜索使用140 fb - 1在√𝑠= 13 = 13 TEV的proton-Proton碰撞中,搜索在辐射量激量激量仪中腐烂的中性长颗粒(LLP)。分析由三个通道组成。第一个目标配对生产的LLP,其中至少一个LLP的产生具有足够低的增强,以至于其衰减产物可以作为单独的喷气机解析。第二和第三通道的目标LLP分别与衰减衰变的𝑊或𝑍玻色子相关。在每个通道中,不同的搜索区域针对不同的运动学制度,以涵盖广泛的LLP质量假设和模型。没有观察到相对于背景预测的事件过多。higgs玻色子分支分支到成对的一对大于1%的强烈衰减中性LLP,在95%的置信度下排除在95%的置信度下,适当的衰减长度在30 cm至4.5 m的适当范围内,这取决于LLP质量,这取决于LLP质量,这是先前搜索的Hadronic Caloremeter搜索量的三个因素。与横截面高于0.1 pb的𝑍玻色子相关的长寿命深光子的产生被排除在20 cm至50 m的范围内的深色光子平均衰减长度,从而通过数量级提高了先前的Atlas结果。最后,Atlas首次对长期的光轴轴向粒子模型进行了探测,生产横截面高于0.1 Pb,在0.1 mm至10 m范围内排除了0.1 Pb。
o 揭示希格斯玻色子的秘密,探索未知领域 o 阐明中微子的奥秘和新现象的量子印记 o 暗能量和宇宙 在国家同步加速器光源 II 上利用光科学引领发现
量子计算机承诺执行某些被认为对古典计算机棘手的任务。玻色子采样是这样的任务,被认为是证明量子计算优势的有力候选者。我们通过将50个不可区分的单模单模状态发送到具有完整连接性和随机矩阵的100模式超级失误干涉仪中,通过将50个不可区分的单模单模式挤压状态发送到了高斯玻色子采样 - 整个光学设置是相锁的 - 并使用100个高效的单光子检测器对输出进行采样。针对利用热状态,可区分的光子和均匀分布的合理假设验证了所获得的样品。光子量子计算机Jiuzhang最多生成76个输出光子点击,该光子可产生10 30的输出状态空间尺寸,而采样速率比使用最先进的仿真策略和超级计算机的采样率更快。t
据报道,在大型强子对撞机上使用𝑝𝑝碰撞数据的𝑊碰撞数据的电孔和光子与√𝑠= 13 tev的中心的观测。数据是通过ATLAS实验从2015年到2018年记录的,对应于140 fb -1的综合发光度。此过程通过矢量玻色子散射机制对四分尺仪玻色子耦合敏感,并对标准模型的电动型扇区进行了严格的测试。。多元技术用于区分electroweak的过程与不可还原背景过程。与6.3个标准偏差相比,Electroweak 𝑊𝛾𝑗𝑗过程的显着性远高于六个标准偏差。信托和差异横截面是在接近检测器接受度的基准相空间中测量的,这与Madgraph5+Pythia8和Sherpa的领先顺序标准模型预测合理一致。结果用于在有效的现场理论的背景下限制新的物理效应。
摘要:近年来,非厄米量子物理在量子光学和凝聚态物理领域获得了极大的欢迎,用于对具有不同对称性的量子系统进行建模。在本文中,我们确定了一个非标准内积,它意味着局部电场和磁场可观测量的玻色子交换子关系,并导致对量化电磁场的自然局部双正交描述。当将此描述与另一种局部厄米描述进行比较时,我们发现这两种方法之间存在等价性,在另一种局部厄米描述中,局部光子粒子的状态,即所谓的位置局部化的玻色子(光点),在传统的厄米内积下是正交的。需要仔细考虑不同描述的物理解释。厄米方法或非厄米方法是否更合适取决于我们想要建模的情况。
量子计算机承诺执行某些被认为对古典计算机棘手的任务。玻色子采样是这样的任务,被认为是证明量子计算优势的有力候选者。我们通过将50个不可区分的单模单模状态发送到具有完整连接性和随机矩阵的100模式超级失误干涉仪中,通过将50个不可区分的单模单模式挤压状态发送到了高斯玻色子采样 - 整个光学设置是相锁的 - 并使用100个高效的单光子检测器对输出进行采样。针对利用热状态,可区分的光子和均匀分布的合理假设验证了所获得的样品。光子量子计算机Jiuzhang最多生成76个输出光子点击,该光子可产生10 30的输出状态空间尺寸,而采样速率比使用最先进的仿真策略和超级计算机的采样率更快。t
1 量子数据锁定是一种量子现象,它使我们能够使用具有信息论安全性的小密钥加密长消息。这与经典信息论形成了鲜明对比,根据香农的说法,经典信息论中的密钥至少需要与消息一样长。在这里,我们探索了用于量子数据锁定的光子架构,其中信息以多光子状态编码并使用多模线性光学和光检测进行处理,目的是将初始密钥扩展为更长的密钥。密钥消耗取决于所采用的模式和光子的数量。在无碰撞极限下,光子聚束的可能性受到抑制,密钥消耗在系统维度上呈对数关系。我们的协议可以看作是玻色子采样物理学在量子密码学中的应用。实验实现具有挑战性,但使用最先进的技术是可行的,因为最近用于展示玻色子采样的技术可以适应我们的方案(例如,Phys. Rev. Lett. 123, 250503, 2019)。
第四章 量子光学基础 51 4.1. 简介 51 4.2. 电磁场的量化 51 4.2.1. 经典电磁学回顾 51 4.2.2. 电磁场的量化 53 4.2.3. 量化场的对易关系 55 4.3. 玻色子高斯态 56 4.3.1. 简介:单模 56 4.3.2. 多模 58 特征函数 58 玻色子高斯态 59 高斯幺正运算 61 例子:高斯纯态 62 4.3.3. 应用于弱相互作用 BEC 63 4.4. 费米子高斯态 65 4.4.1. 简介:单模 65 4.4.2.多模式 66 高斯幺正运算 68 例子:费米子高斯纯态 70 费米子相干态和特征函数 71 4.4.3. 对 BCS 超导体的应用 75 4.5. 变分原理 77 4.5.1. 简介 77 4.5.2. 复值变分流形 78