摘要 考虑进行板级跌落试验,目的是开发一个具有物理意义的分析预测模型,用于评估焊料材料中预期的冲击引起的动态应力。讨论了球栅阵列 (BGA) 和列栅阵列 (CGA) 设计。直观地感觉,虽然应用 CGA 技术缓解焊料材料的热应力可能非常有效(因为 CGA 与 BGA 相比具有更大的界面柔顺性),但当 PCB/封装经历动态负载时,情况可能会大不相同。这是因为 CGA 接头的质量大大超过 BGA 互连的质量,并且在 CGA 设计的情况下,相应的惯性力可能大得多。针对相当随意但又现实的输入数据进行的数值示例表明,CGA 设计的焊料材料中的动态应力甚至高于 BGA 互连中的应力。这尤其意味着,应彻底选择板级测试中具有物理意义的跌落高度,并且对于 BGA 和 CGA 设计,该高度应该有所不同。
JCET 徽标是长电科技集团股份有限公司的注册商标。该商标在中华人民共和国注册(注册号:3000529)。此处的所有其他产品名称和其他公司名称仅供识别之用,可能是其各自所有者的商标或注册商标。本手册以及此处的数据表仅供展示之用,长电科技或其子公司不保证或作出任何明示、暗示或法定的准确性、充分性、可靠性、完整性或其他方面的陈述。建议读者在做出任何决定之前,随时寻求专业建议并获得对此处包含的信息的独立验证。长电科技保留随时更改信息的权利,恕不另行通知。©版权所有 2019。长电科技集团股份有限公司。保留所有权利。
本文介绍了通过数字图像相关 (DIC) 技术对球栅阵列 (BGA) 上焊球的热膨胀系数 (CTE) 进行分析的方法。由于微尺度元件对热的敏感性,评估半导体元件的热机械性能是一项主要挑战。然而,BGA 的 CTE 分析对于解决导致故障的热失配应变问题具有重要意义。同时,焊球热膨胀的测量是在微尺度和加热条件下进行的,传统的应变测量方法无效。在本分析中,使用微 DIC 系统测量焊球在加热台上受到温度载荷时的应变值。使用加热台内的热电偶测量焊球的实际温度,以确保温度的均匀性。获得特定温度下测得的应变,并使用线性分析绘制 CTE 图表。测得的焊球的平均 CTE 值为 27.33 × 106 / oC。结果表明,测量结果接近焊球 CTE 的参考值。该分析使用开发的 DIC 方法对 BGA 进行了可靠的分析。
摘要 — 激光超声检测是一种新颖的、非接触的、非破坏性的技术,用于评估微电子封装中焊料互连的质量。在该技术中,通过比较已知良好参考样本和被测样本的平面外位移信号(该信号由超声波传播产生)来识别焊料互连中的缺陷或故障。实验室规模的双光纤阵列激光超声检测系统已成功证明可以识别先进微电子封装(如芯片级封装、塑料球栅阵列封装和倒装芯片球栅阵列封装)中焊料互连中的缺陷和故障。然而,任何计量系统的成功都依赖于精确的数据,以便在微电子行业中发挥作用。本文使用量具重复性和再现性分析证明了双光纤阵列激光超声检测系统的测量能力。工业倒装芯片球栅阵列封装已用于使用激光超声检测系统进行实验,检测数据用于进行重复性和再现性分析。量具重复性和再现性研究也已用于选择已知的良好参考样品来与受试样品进行比较。
目标和产品 本指南文件介绍了在高可靠性应用中使用先进塑料球栅阵列 (BGA) 和芯片尺寸 BGA (DSBGA) — 商用现货 (COTS) — 封装技术和组件的建议。最先进和高密度的 BGA 采用倒装芯片球栅阵列 (FCBGA) 配置,输入/输出 (I/O) 超过 2000 个,间距为 1 毫米。间距小于 1 毫米(低至 0.3 毫米)的 DSBGA 通常最多有几百个 I/O。由于更大芯片的产量挑战和节点缩小的高成本,业界已转向实施系统级封装 (SiP)。先进的 SiP 集成芯片技术(称为 Chiplet)是电子封装技术的下一个范式转变。本指南简要讨论了先进的 COTS 封装技术趋势,并提供了两个测试评估示例;一个针对 BGA,另一个针对 DSBGA。对于这两个类别,测试结果涵盖了关键工艺问题、质量指标和质量保证 (QA) 控制参数,随后提供了全面的测试数据以解决热循环可靠性和局限性。最后,报告摘要中包括了从这些评估中吸取的经验教训得出的关键建议。针对低风险灌注航天应用,给出了 COTS BGA/DSBGA 封装技术的具体建议,同时考虑了任务、环境、应用和寿命 (MEAL) 要求。
KA24-20 ガス入 24 20 T 25 ± 1 58 ± 2.5 BA15d/19 31.8 ± 1.5 4 以下 4 以下 上向 20 ± 3.0 360 ± 80 18.0 ± 2.7 75 ―― 30cm
KA24- 20 ガス入 24 20 T 25 ± 1 58 ± 2.5 BA15d/ 19 31.8 ± 1.5 4 以下 4 以下 上向 20 ± 3.0 360 ± 80 18.0 ± 2.7 75 ―― 30cm
摘要:为提高热循环和随机振动条件下焊点疲劳可靠性,对板级可靠性(BLR)试验板的螺丝孔位置进行研究。建立BLR试验板的有限元模型,推导了热循环和随机振动条件下影响焊点疲劳寿命的主要参数塑性应变能密度和1-sigma应力。通过灵敏度分析,分析了螺丝孔位置与疲劳寿命主要参数之间的相关性。通过多目标优化,确定了热循环和随机振动条件下焊点疲劳寿命最大的螺丝孔位置。与初始螺丝孔位置的BLR试验板相比,优化螺丝孔位置后的BLR试验板在热循环和随机振动条件下的疲劳寿命明显提高。
亚类球菌包括大量的原生动物寄生虫,包括人类的重要病原体和诸如弓形虫弓形虫,新孢子虫,eimeria spp。和cystoisosospora spp。他们的生命周期包括从无性阶段转变为性阶段,通常仅限于单个宿主。当前对球虫寄生虫的研究集中于细胞生物学以及在不同生命阶段,宿主细胞侵袭和宿主寄生虫相互作用中蛋白质表达和传播的潜在机制。此外,还评估了新型的抗癌药物靶标。考虑到各种各样的研究问题以及减少和替代动物实验的要求,需要进一步开发和确定球球菌的体外种植以满足这些要求。出于这些目的,已建立的文化系统经常得到改善。此外,新的体外培养系统最近在球虫研究中获得了相当大的重要性。单层细胞的体外培养良好,可以支持寄生虫阶段的生存能力和发展,甚至可以在体外完成生命周期,如Cystoisosospora Suis和Eimeria Tenella所示。此外,新的三维细胞库模型用于传播隐孢子虫属。(球虫的近亲),三维类器官的感染也可以详细研究寄生虫与宿主组织之间的相互作用,因为寄生虫与宿主组织之间的相互作用也获得了知名度。2022作者。由Elsevier Ltd代表澳大利亚寄生虫学会出版。三维库系统中的最新进展是芯片上的器官模型,迄今为止,迄今为止仅测试了gondii的测试,但有望加速其他球虫的研究。最后,据报道,苏伊斯梭菌和隐孢子虫的生命周期的完成后,在无性阶段发生后,将继续在无宿主细胞环境中继续进行。这种轴承文化变得越来越可用,并开放了有关寄生虫生命周期阶段和新颖干预策略的研究的新途径。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。