摘要 光的量子特性使革命性的通信技术成为可能。推进这一研究领域的关键是清晰地理解状态、模式、场和光子的概念。场模式的概念源自经典光学,而状态的概念在以量子力学的方式处理光时必须仔细考虑。术语“光子”是一个重载标识符,因为它通常用于指代量子粒子或场的状态。这种重载通常不结合上下文使用,可能会混淆描述我们测量的现实的物理过程。我们使用现代量子光学理论回顾了这些概念之间的用法和关系,包括光子波函数的概念,该概念的现代历史由 Iwo Białynicki-Birula 在本期刊上发表的一篇开创性论文推进,本文就是向他致敬。 1. 简介 在开始研究量子光学时,很自然地会问:“什么是光子?”但也许更好的问题是:“什么是量子场?”鉴于量子理论与我们赋予该理论的数学元素的名称无关,那么我们如何命名和解释它们何时重要呢?在没有完整的数学解决方案的情况下,尝试对问题建立直觉时,正确地概念化和命名理论元素会有所帮助。这篇献给 Iwo Białynicki-Birula 教授的特刊以教程的方式回顾了状态、模式、场和光子在量子光学中的作用,承认了他对该主题的重要贡献。i 我们希望启发那些可能刚进入该领域的研究人员,例如那些在经典网络领域工作并且现在开始考虑量子网络潜在有用应用的研究人员。我们回顾了光子波函数的概念,它的现代历史大致始于 Białynicki-Birula 在本期刊上发表的一篇论文 [1] 和 John Sipe [2] 的一篇同期论文。状态、模式和场是适用于经典和量子领域的概念。本文以教学的方式回顾了这些概念在两个领域中的产生和定义,描述了电磁场激励的量化如何引入新的(可测量的)行为,并阐明了两个领域之间的联系。
为了实现拜登政府到 2035 年实现电网脱碳的目标,美国必须从现在到 2025 年每年安装 30 吉瓦交流 (GW) 的太阳能,并从 2025 年到 2030 年每年增加到 60 吉瓦。作为背景,美国在 2021 年安装了 19 吉瓦的太阳能容量。美国光伏 (PV) 系统的装机容量现已超过 100 吉瓦,其中约 75% 是在过去五年内部署的。虽然光伏系统的预期寿命约为 25-35 年,但一些模块和系统组件已经进入废物流。模块可能会因天气损坏、安装错误或制造序列缺陷而达到使用寿命 (EOL)。到 2050 年,美国每年的 PV 组件 EOL 量可能达到市政电子垃圾量的 12%。PV 组件材料 99% 是无害的,而且 95% 的材料可以利用现有技术进行回收。这为开发安全且低影响的 EOL 材料处理方法奠定了坚实的基础。目前 EOL 处理的经济性不利于回收。从废旧发电机回收 PV 组件的成本约为每组件 15 至 45 美元。这明显高于每组件 1 至 5 美元的垃圾填埋费。因此,联邦和州政策很可能会对垃圾处理方式产生重大影响。美国能源部 (DOE) 太阳能技术办公室 (SETO) 旨在减少太阳能对环境的影响。该计划概述了可以实现安全和环保的 PV EOL 材料处理的研究活动。现在采取的行动将提高开发支持技术的可能性,以便安全、负责和经济地处理光伏 EOL 量,从而实现更广泛的部署以及安全和对社会负责的供应链。SETO 计划通过利益相关者外展活动、数据收集、研究和分析来解决光伏 EOL 问题。SETO 旨在通过开发一个数据库来跟踪模块的材料、数量、年龄、位置、EOL 原因和 EOL 处理,从而更好地了解 EOL 的状态。此外,它将支持硬件研究,以减少 EOL 对环境的影响,并在 2030 年前将模块回收成本降低一半以上。
提供用户定义的力学、信号呈现和生物分子释放控制。利用光介导化学来调节材料特性,使研究人员能够在时间和空间上调整和控制化学反应。[25] 依靠生理条件来触发材料反应可能具有挑战性,因为局部酶浓度、pH 值甚至还原环境在活体样本和患者中可能存在很大差异。[26,27] 利用外部触发器可以帮助标准化研究和临床结果,将启动材料改变的权力交到患者或提供者手中。在此类事件的其他可能的外部触发器中(例如超声波、磁场或电场以及外源性施用的小分子),光是独一无二的,因为它可以提供高度局部化的材料响应,能够准确调整材料变化的程度,并有可能使用不同的波长调节不同的物理化学性质。虽然光响应生物材料在实验室中引起了轰动,但它们的适用范围很少超出体外细胞培养。常用化学物质与组织不透明度相结合所带来的根本限制使得体内应用基本上不可能。材料中最常用的光响应分子对近紫外线 (near-UV) 和蓝光反应最佳,这两种光对组织的穿透性都最小。[28] 虽然一些用这些光响应基团修饰的生物材料已在体内使用,但它们的激活仅限于皮肤下方的移植位置。[29] 将这些方法扩展到体内环境需要使用能够深入复杂组织的低能量、长波长光。扩大体内调节可能性的愿望导致了对此类光响应分子的激活波长进行红移的重大推动。这些化学进展,加上光学技术的发展,可在体内局部管理光,为在活体环境中光控制材料提供了新的和令人兴奋的机会。鉴于最近的几份报告详细介绍了对紫外线和蓝光敏感的物种及其材料科学应用,[1,30,31] 在这里我们重点介绍一些系统,这些系统的光激活可以通过接近哺乳动物组织光学窗口的低能光来控制。为了本综述的目的,我们将讨论仅限于光活性小分子和蛋白质,它们的单光子激发波长位于可见光和近红外 (near-IR) 区域,可用于通过光调节体内生物材料的特性。
50 日本电报电话公司 815 89% 52 应用材料株式会社 793 5% 53 腾讯控股有限公司 789 24% 54 VMWARE, INC. 762 -18% 55 甲骨文公司 759 10% 56 霍尼韦尔国际公司 750 -20% 57 通用汽车公司 734 -3% 58 西部数据公司 733 -4% 59 CAPITAL ONE FINANCIAL 708 1% 60 诺基亚公司 694 0% 61 理光公司676 -13% 61 VERIZON COMMUNICATIONS INC. 676 -3% 63 BROTHER INDUSTRIES, LTD. 659 10% 64 英飞凌科技股份公司 657 -4% 65 SAP SE 656 4% 66 夏普株式会社 653 -24% 67 富士通有限公司 652 -18% 68 SALESFORCE.COM, INC. 634 7% 69 保时捷汽车控股 SE 633 -8% 70 联想集团有限公司 632 10% 71 铠侠控股株式会社 625 -7% 72 康普公司 624 30% 73 百度公司 618 43% 74 住友电气工业公司 611 -13% 75 美国银行公司 608 19% 76 TDK CORPORATION 594 11% 77 意法半导体 587 -4% 78 加州大学 570 -15% 79 软银集团公司 565 -3% 79 东京电子有限公司 565 21% 81 赛峰集团 560 2% 82 空中客车公司 523 12% 83 三菱重工业株式会社522 -2% 84 惠普企业 511 -4% 85 3M 公司 508 -11% 85 拜耳股份公司 508 4% 87 小米公司 503 33% 88 波士顿科学公司 494 -7% 89 康宁公司 483 13% 90 卡特彼勒公司 482 1% 91 恩智浦半导体公司 471 -2% 92 劳斯莱斯控股公司 464 -13% 93 大陆汽车集团 459 1% 94 德国电信股份公司 457 10% 94 三星电机 457 -5% 96 迪尔公司 452 4% 97 史赛克公司 444 -8% 98 先进微设备公司 438 -2% 99 斯奈普公司 437 24% 100 宝洁公司 433 -20%
51 TCL集团 837 -5% 52 京瓷株式会社 831 -15% 53 富士通有限公司 795 -27% 54 步步高电子株式会社 792 40% 55 先进新技术 790 22% 56 理光株式会社774 -17% 57 西部数据公司 760 -4% 58 通用汽车公司 759 -5% 59 应用材料公司 756 2% 60 威瑞森通信公司 712 0% 61 保时捷汽车控股公司 708 8% 62 住友电气工业公司 707 -4% 63 第一资本金融公司 699 -6% 64 诺基亚公司 697 -8% 65 英飞凌技术股份公司 688 -18% 66 铠侠控股公司 672 -11% 67 加州大学 671 -2% 68腾讯控股有限公司 639 3% 69 SAP SE 633 -14% 70 甲骨文公司 617 -21% 71 意法半导体 606 -6% 72 兄弟工业株式会社 599 -16% 73 SALESFORCE.COM, INC. 594 13% 74 3M 公司 581 -13% 75 联想集团有限公司 573 -9% 76 软银集团有限公司 561 -22% 77 赛峰集团 549 -14% 78 宝洁公司 540 -16% 79 惠普企业 537 -35% 80 三菱重工业株式会社534 1% 81 TDK 株式会社 531 -8% 82 奥林巴斯株式会社 523 -19% 83 波士顿科学公司 518 -14% 84 拜耳股份公司 517 -27% 85 劳斯莱斯控股有限公司 515 -7% 86 美国银行公司 513 16% 87 ADOBE INC. 489 0% 88 巴斯夫 SE 488 -6% 89 半导体能源实验室 483 -13% 90 康普公司 482 -12% 90 恩智浦半导体公司 482 -26% 92 三星电机 481 1% 93卡特彼勒公司 479 19% 94 罗氏控股公司 476 4% 95 史赛克公司 475 20% 96 东京电子有限公司 467 -6% 97 空中客车公司 465 -17% 98 大陆集团 453 -8% 99 百度公司 443 14% 100 斯伦贝谢有限公司 435 -31%
51 哈里伯顿公司 739 -24% 52 京瓷株式会社 717 -12% 53 英飞凌科技股份公司 716 7% 54 腾讯控股有限公司 702 -11% 55 惠普公司 691 -50% 56 意法半导体 689 17% 57 铠侠控股株式会社 687 10% 58 T-MOBILE / 德国电信股份公司 680 7% 59 西部数据公司 674 -8% 60 SNAP 公司 658 51% 61 诺基亚公司 651 -6% 61 荷兰皇家飞利浦公司 651 -21% 63 SALESFORCE.COM, INC. 646 1% 64 美国银行公司 644 6% 65 康普公司 638 2% 66 兄弟工业株式会社 637 -3% 67 百度公司 626 1% 68 TDK 株式会社 604 -4% 69 理光公司576 -15% 70 ADEIA INC. 554 27% 71 东京电子有限公司 551 -2% 72 美国电话电报公司 547 -35% 73 加州大学 546 -4% 74 康宁公司 544 13% 75 威瑞森通信公司 540 -2% 76 富国银行 537 32% 77 联想集团有限公司 530 -16% 78 康卡斯特公司 529 28% 79 保时捷汽车控股 SE 521 -20% 79 日本显示器公司 521 35% 79 富士通有限公司 521 -20% 82史赛克公司 520 15% 83 SAP SE 519 -21% 84 OPPO 移动通信 516 -32% 85 TCL 集团 515 -54% 86 空中客车公司 512 -3% 87 贝克顿·迪金森公司 511 22% 88 先进微设备公司 508 9% 89 惠普企业 503 -3% 90 赛峰公司 502 -10% 90 三星电机 502 10% 92 卡特彼勒公司 500 4% 93 夏普公司 498 -24% 94 迪尔公司 497 9% 95 英伟达公司 494 77% 96 波士顿科学公司 491 -1% 97 宝洁公司 489 13% 98 Adobe Inc. 481 15% 99 半导体能源实验室 475 16% 100 耐克公司 464 20%