台式设备包括一个背板,背板上装有两个装有油的透明壁圆筒(随附)。学生使用手动泵(随附)来增加或减少左侧圆筒(储油器)中的压力,从而移动右侧圆筒(测试圆筒)中的油“液体活塞”。该活塞压缩或减压测试圆筒中滞留的空气柱。
台式设备包括一个背板,背板上装有两个装有油的透明壁圆筒(随附)。学生使用手动泵(随附)来增加或减少左侧圆筒(储油器)中的压力,从而移动右侧圆筒(测试圆筒)中的油“液体活塞”。该活塞压缩或减压测试圆筒中滞留的空气柱。
热力学基本原理、相共存、吉布斯相律和相图 理想气体状态方程和范德华理论的扩展 朗道理论和振动原理(金兹堡-朗道) 理想气体、晶格气体的统计理论和气体与固体合金热力学性质的常规溶液理论。 应力张量的统计力学:维里尔公式 量子谐振子的统计和固体的比热 自旋统计:顺磁性和铁磁性,铁磁性的平均场近似
一般描述: 一般热力学、化学平衡、化学反应动力学和机制,内容如下:A) 热力学定律:经验温度、内能、熵、不可逆过程和热平衡 - 模型和标准状态:理想气体、理想溶液和混合物 - 活动 - 热力学标准量的制表。反应热力学:化学势、反应量及其压力和温度依赖性 - 相平衡。 B) 统计热力学:分布与统计、玻尔兹曼关系、熵、分布函数、状态函数的统计描述
SI 单位。有效数字。波:强度、叠加、干涉、驻波、共振、拍频、多普勒。几何光学:反射、折射、镜子、薄透镜、仪器。物理光学:杨氏干涉、相干性、衍射、偏振。流体静力学和动力学:密度、压力、阿基米德原理、连续性、伯努利。热:温度、比热、膨胀、热传递。矢量。点的运动学:相对运动、抛射运动和圆周运动。动力学:牛顿定律、摩擦力。功:点质量、气体(理想气体定律)、引力、弹簧、功率。动能:保守力、引力、弹簧。能量守恒。动量守恒。冲量和碰撞。粒子系统:质心、牛顿定律。旋转:扭矩、角动量守恒、平衡、重心。
模块-1经典统计力学L:12个宏观和显微镜状态,相空间,统计集合,假定相等的先验概率,状态密度的行为,Lowville的定理(经典)。在系统平衡中的能量分布,概率分布的清晰度。微型典型的合奏,规范的合奏,规范合奏的应用(磁磁性,分子,理想气体中的分子,大气定律),平均值的计算和规范合奏中的平均值和波动,与热力学的相关性,在热力学中的连接,在较大的元素中,在较大的α上进行了较大的α型和平均值的化学物质,均等的化学物质,平均值,平均值,平均值,平均值,平均值,平均值,平均值,均值范围。根据宏伟分区功能的功能。
表 A–1 摩尔质量、气体常数和临界点性质 表 A–2 各种常见气体的理想气体比热 表 A–3 常见液体、固体和食物的性质 表 A–4 饱和水 - 温度表 表 A–5 饱和水 - 压力表 表 A–6 过热水 表 A–7 压缩液态水 表 A–8 饱和冰 - 水蒸气 图 A–9 水的 Ts 图 图 A–10 水的 Mollier 图 表 A–11 饱和制冷剂-134a - 温度表 表 A–12 饱和制冷剂-134a - 压力表 表 A–13 过热制冷剂-134a 图 A–14 制冷剂-134a 的 Ph 图 图 A–15 纳尔逊-奥伯特广义压缩性图表 表 A–16 高海拔大气的性质 表 A–17 空气的理想气体性质 表 A–18 氮气、N2 的理想气体性质 表 A–19 氧气、氧气
传统的机器学习工作OW始于为相关数据收集文献的艰苦过程。可以从文本收集计划中获得一些帮助。1这些数据可用于在任何其他相关化学问题中的性质或材料或材料或相关性的属性或合成中的相关性。为此,至关重要的是用馈入模型的功能来描述系统。最终,训练有素的模型使我们能够从未知材料的特征中做出预测。这些模型通常会在更多数据可用时改进。但是,在化学和材料科学方面,实验数据的量是O的,即使不是总是是瓶颈。因此,必须有一定的杠杆作用。一种方法是通过计算机模拟扩展数据集。2替代,我们可以利用系统的知识。例如,假设我们要在给定密度和温度下预测气体的压力;我们可以将机器学习(ML)集中在预测与理想气体定律的偏差上。3
第1课:介绍,基本原理和假设。简介和简短的历史笔记。经典微观描述。宏观描述和可观察物。合奏和liouville定理的概念。量子配方和量子Liouville的定理。统计物理学的假设。附录:不可逆性:时间的箭头。动力学系统和偏僻的理论。合奏的构造:Boltzmann的统计物理学。统计物理学以平衡为止。第2课:合奏理论。微型典型合奏和熵。规范合奏。分区功能。稳定性。大规范合奏。附录:经典限制的量子效应。第3课:波动,合奏的等效性和热力学极限。动机。能量的规范波动。粒子数量中的大规范波动。热力学极限。附录:大规范的能量波动。第4课:经典的理想系统。定义。玻尔兹曼天然气。玻尔兹曼气体的规范分区功能和热力学。分子结构:旋转,振动和电子自由度。附录:量子力学中的刚性转子。第5课:理想量子气的简介。简介。量子不可区分:玻色子和费米子。理想的量子系统。比热。理想量子气的状态方程。 弱退化的量子理想气体。 第6课:退化费米子系统。 退化理想的费米斯气体:费米能。 在低温下的状态方程。 相对论的退化费米亚气:白矮星的Chandrasekhar模型。 原子的统计模型:Thomas-Fermi模型。 完全退化相对论费米斯气体。 金属中的电子气体。 理想费米斯气体的有效性范围。理想量子气的状态方程。弱退化的量子理想气体。第6课:退化费米子系统。退化理想的费米斯气体:费米能。在低温下的状态方程。相对论的退化费米亚气:白矮星的Chandrasekhar模型。原子的统计模型:Thomas-Fermi模型。完全退化相对论费米斯气体。金属中的电子气体。。
▪ 每个原子都有一个带电的子结构,由原子核组成,原子核由质子和中子组成,周围环绕着电子。(HS-PS1-1)▪ 元素周期表按原子核中的质子数水平排列元素,并将具有相似化学性质的元素放在列中。该表的重复模式反映了外层电子态的模式。(HS-PS1-1)▪ 物质在整体尺度上的结构和相互作用由原子内和原子间的电力决定。(HS-PS1-3),(HS-PS2-6 的次要部分)▪(NYSED)理想气体的概念是解释气体行为的模型。当真实气体处于低压和高温时,它最像理想气体。(HS-PS1-9)▪(NYSED)溶液具有可以定性和定量描述的特征性质。(HS-PS1-10)PS1.C:核过程