阿法替尼 阿西替尼 博舒替尼 卡培他滨 色瑞替尼 克唑替尼 达拉非尼 达沙替尼 厄洛替尼 依维莫司 吉非替尼 伊布替尼 伊马替尼 尼罗替尼 拉帕替尼 来那度胺 奥希替尼 哌柏西利 帕唑帕尼 泊马度胺 索拉非尼 舒尼替尼 替莫唑胺
©作者,根据国际骨骼协会的独家许可(ISS)2023。本文的本版本已被接受以供出版,经过同行审查(适用),并受到Springer Nature的AM使用条款的约束(https://www.springernature.com/gp/gp/open-research/policies/accepted-manuscript-terms),但并不是记录和未反映后的记录和任何更正的版本。记录版本可在线获得:https://doi.org/10.1007/s00256-023-04473-7。
Lovejoy 女士自 2021 年 11 月起担任 Kyndryl Holdings, Inc. (Kyndryl) 的全球安全和弹性实践负责人,Kyndryl 是一家在纽约证券交易所上市的跨国信息技术基础设施服务公司。在加入 Kyndryl 之前,Lovejoy 女士于 2019 年 2 月至 2021 年 11 月担任安永全球网络安全负责人,并于 2017 年 1 月至 2019 年 1 月担任人工智能感知和响应平台 BluVector Inc. 的创始人兼首席执行官。在此之前,她曾在 IBM 担任高级职位,担任全球首席信息安全官和公司安全服务部总经理,负责为 IBM 的全球客户构建端到端的安全计划。 Lovejoy 女士拥有风险管理领域的美国和欧盟专利,并被《咨询报告》评为“2021 年顶级网络安全领导者”,并被《网络快报》评为 2022 年“十大网络空间守护者”之一。她目前担任 Radiant Logic 的董事和哥伦比亚大学技术管理中心的技术导师。Lovejoy 女士获得了拉斐特学院的本科学位。2024 年 3 月
学术与行政艺术与科学,商业,工程,CFAE(哥伦布,伍斯特,全州),兽医医学,研究生院,国际事务 /研究,OAA,OTDI,OTDI,社会工作,大学外展,图书馆,图书馆,机场,机场,A&P,HR,HR,PARE < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div>
随着航空航天事业的快速发展,飞机的热舒适性受到越来越多的关注。然而客舱内环境与地面建筑环境有很大不同[4-6]。客舱环境的典型特征是低压、低湿度、缺乏新鲜空气和密封性要求高,每个乘客平均只有1至2 m 3 的空间[7],远远小于一般的办公环境。商用客机的巡航高度通常在5490 m至12500 m之间[8]。在这个高度,特别是在较高的海拔地区,大气的含水量很低。客舱中的水分主要来自乘客的汗液蒸发,因此客舱内的相对湿度通常低于20%[9]。这种低相对湿度会引起眼干、呼吸道阻塞等不适症状[10,11]。近期大量研究表明客舱个性化送风系统可有效改善旅客周围空气质量,有效降低旅客呼吸区污染物[12-15]。目前,关于地面建筑室内环境热舒适的相关研究及文献综述较多[16-18],但针对飞机客舱环境热舒适的研究较少。因此,本文试图对人体热舒适领域中与飞机客舱热舒适研究相关的工作进行总结。第二部分探讨了飞机客舱热舒适的影响因素,并从环境因素和人为因素两个方面介绍了近年来的研究进展。第三部分从均匀、稳态环境下的典型热感觉模型和非均匀、瞬态环境下的新型热感觉模型两个方面介绍了热感觉预测模型。第四部分介绍自适应热舒适的研究进展。第五部分介绍了飞机客舱热舒适性研究的进展及展望,主要介绍了飞机客舱通风的研究发展。
指挥官 Joshua D. Dumond 少校是德克萨斯州达拉斯人,2001 年 3 月加入美国陆军,担任骑兵侦察兵。CSM Dumond 担任过从团队领导到指挥官军士长的所有领导职务。CSM Dumond 的军事教育包括初级领导力发展课程、基本士官课程、机动高级领导课程、军士长学院。CSM Dumond 的平民教育包括 Excelsior 大学的应用科学副学士学位。他曾任职于德国比丁根第 1 骑兵团第 1 中队(侦察班长)、路易斯安那州波尔克堡第 509 步兵团第 1 营(侦察排中士)、北卡罗来纳州布拉格堡第 73 骑兵团第 5 中队影子小队(班长)、北卡罗来纳州布拉格堡第 73 骑兵团第 5 中队土匪小队(侦察排中士)、佐治亚州本宁堡机动高级领导课程(教官)、北卡罗来纳州布拉格堡联合特遣部队(小队中士)、佐治亚州本宁堡装甲基础军官领导课程(一级中士)、路易斯安那州波尔克堡第 509 步兵团第 1 营 D 小队(一级中士)、第 73北卡罗来纳州布拉格堡骑兵团(作战士官长)和路易斯安那州波尔克堡第 89 骑兵团第 3 中队(指挥士官长)。
我,Dipanshu Naware 博士(IEEE 会员),于 2010 年在比莱 CSVTU 获得电气与电子工程学士学位,并于 2013 年在蒂鲁吉拉帕利国立理工学院获得电力系统技术硕士学位。我的博士学位是在印度那格浦尔 Visvesvaraya 国立理工学院电气工程系获得的。我在高影响因子的国际期刊、多个国内/国际会议上发表了 13 篇研究论文,并撰写了书籍章节。我的研究兴趣包括预测研究(负荷需求、太阳辐照度、风速)、需求响应策略、电池储能、绿色氢能储能以及智能住宅社区的网络安全。目前,我在印度蒂鲁吉拉帕利国立理工学院电气与电子工程系担任助理教授(二级)。
1. 第一步通常涉及收集应用需求并执行高级系统设计,将需求映射到一组硬件组件上。组件是满足这些需求所必需的,包括设计中将使用的目标 MCU、构建/调试应用程序所需的工具链等等。 2. 下一步通常确定使用目标 MCU 的哪些板载外设。在此步骤中,通常需要花费大量时间来了解板载外设的寄存器映射,并编写将外设暴露给上层应用程序代码所需的低级驱动程序代码。大部分工作已经在 FSP 中完成,大大简化了应用程序开发。 3. 除了目标 MCU 的板载外设外,设计通常还包括外部硬件及其控制方式。例如,EK-RA6M3G 具有图形扩展板,它由 RA6M3 MCU 的片上图形 LCD 控制器 (GLCDC) 直接控制。 4. 最后一步通常详细说明如何在所选硬件之上构建应用程序以满足初始要求。图形应用程序要求首先映射到 EK-RA6M3G 套件的板载外设。图 4 显示了图形应用程序使用的所有内部硬件外设。本应用说明介绍了这些外设中的每一个是如何 c