ameetha97 [at] gmail.com 2 Carmel College,Carmel College,Life Science系,Palace Road,Bengaluru 560052,印度卡纳塔克邦,Prakashshubha5 [at] gmail.com摘要:vermicoposting是一种非热友好的方法来制备丰富的成分。根据一些研究,ver骨化也是可生物降解废物分解的生物氧化过程。vermicompost是一种天然的生物肥料,它是一种精细的,稳定的有机肥料,具有出色的水保留能力,空气循环,高渗透性,排水性,微生物的活性和酸中和或碱性的能力。它还包含丰富的养分来源,从而增加了土壤肥力和植物的生长。vermicomposting增加了有益微生物的种群,从而通过增强调节激素和酶的植物生长浓度来改善植物的生长。他们还控制了病原体对植物的攻击,害虫和线虫的攻击,这有助于增加农作物的产量。vermicompost具有物理,化学,生物学和生化特性,有助于促进可持续农业。他们还帮助国内,农业,工业和生物医学废物管理,对生活和环境产生危险的影响。关键字:有益的微生物,earth,植物生长促进,vermicomposting,废物管理1。引言农业是印度经济的骨干。目前,在世界上,印度是顶级种植者之一[3]。近年来,这个行业的增长急剧上升。地球的表面主要被土壤覆盖,这是一层薄层的材料。该行业雇用最大的劳动力,在该国的总增值(GVA)中占18.8%(2021-22)。在过去的几年中,耕作在2020-21中显示出3.6%的可观增长,在2021 - 22年中显示3.9%[53]。土壤是由岩石瓦解形成的。土壤由有机质量,气体,液体,矿物质和生物共同支持生命[33]。土壤是植物生长,储水和供应,地球大气的修饰和生物栖息地的一种介质。土壤为植物提供结构支持[54]。各种土壤,具有不同的化学和物理特性。诸如风化,微生物活动和浸出等过程决定了土壤的品种。植物的生长直接取决于土壤的结构,并间接影响植物的养分,空气和水的循环[5]。土壤对于耕种至关重要,土壤养分对于种植农作物至关重要。耕种的另一个重要因素是土壤的健康。使用生物肥料,滋养土壤[40]。广泛使用化肥,导致许多问题,例如土壤侵蚀,氮浸出,土壤压缩,有机质量的耗竭和土壤碳损失。有机肥料(例如肥料和Vermicompost)是有机农业的重要组成部分,因为它提供了
贝莱斯芽孢杆菌具有多种有益活性,例如对抗植物疾病、促进生长、提高作物抗逆能力以及增强植物防御能力。这些特性使其成为农业用途的有力候选者,尤其是作为生物防治剂和促生长细菌。本综述仔细研究了贝莱斯芽孢杆菌的起源、作用机制和潜在的农业效益。实验室和田间研究均表明,通过产生有益化合物、占据环境空间和增强植物防御能力,该芽孢杆菌可以成功减少植物疾病并支持作物生长。尽管贝莱斯芽孢杆菌已用于某些肥料和生物农药,但在扩大生产、选择合适菌株和确保产品稳定性方面仍然存在挑战。本综述指出了当前的研究差距并提出了未来的方向,例如改进菌株选择、开发更好的生物肥料和推进生产技术以在农业中最大限度地发挥贝莱斯芽孢杆菌的功效。这些发现旨在指导进一步的研究并提高其在可持续农业中的应用。
厌氧消化(AD)是将富含碳的生物量(包括木质纤维素废物)转化为能量(富含甲烷的沼气)和增值产品(例如生物肥料)的最先进的技术。富含甲烷的沼气可以通过称为生物甲基化的过程进一步升级为天然气质量。木质纤维素降解。木质纤维素是植物生物量的主要结构成分,但是由于其顽固性,这种天然物质的很大一部分被浪费了。该小组的特征是来自生物质富裕栖息地的微生物群落,目的是进一步使其用于工业应用的木质纤维素分解能力。土壤微生物组。土壤微生物组重生主要是细菌,古细菌,病毒,真菌,生物和其他小真核生物,例如硅藻。土壤微生物通过分解土壤有机物并转化重要的养分来确定农业生态系统的生产率,从而在碳和养分循环中起关键作用。此外,尽管它们在粮食安全和气候变化中的重要性,但大多数土壤微生物在很大程度上都没有表征。废水处理和去除污染物,重点是生物学过程(例如有氧颗粒状污泥反应器)或通过吸附或膜操作去除顽固化合物。
厌氧消化(AD)是将富含碳的生物量(包括木质纤维素废物)转化为能量(富含甲烷的沼气)和增值产品(例如生物肥料)的最先进的技术。富含甲烷的沼气可以通过称为生物甲基化的过程进一步升级为天然气质量。木质纤维素降解。木质纤维素是植物生物量的主要结构成分,但是由于其顽固性,这种天然物质的很大一部分被浪费了。该小组的特征是来自生物质富裕栖息地的微生物群落,目的是进一步使其用于工业应用的木质纤维素分解能力。土壤微生物组。土壤微生物组重生主要是细菌,古细菌,病毒,真菌,生物和其他小真核生物,例如硅藻。土壤微生物通过分解土壤有机物并转化重要的养分来确定农业生态系统的生产率,从而在碳和养分循环中起关键作用。此外,尽管它们在粮食安全和气候变化中的重要性,但大多数土壤微生物在很大程度上都没有表征。废水处理和去除污染物,重点是生物学过程(例如有氧颗粒状污泥反应器)或通过吸附或膜操作去除顽固化合物。
摘要:基于微生物的产品(作为生物农药或生物肥料)具有较长的应用历史,尽管它们的使用仍然有限,这主要是由于在领域条件下感知的低且不一致的效能。然而,在农业生产的化学范式之后,它们的效率一直与化学产品的作用机理和生产过程完全不同。此范式也已应用于监管过程,特别是用于生物农药,使基于微生物的配方的营销很难。对土壤中应用后对生物无关行为的了解及其对土壤微生物组的影响应在复杂的环境(例如土壤)中更好地利用基于微生物的产品。此外,在这方面,还应考虑微生物菌株在植物生长促进和保护方面的多功能能力。因此,用于这些研究的方法是改善基于微生物的产品活动和改善其效率的知识和理解的关键,从农民的角度来看,这是评估治疗方法的参数。在这篇综述中,我们正在解决与生产和配方过程有关的方面,突出了可用于评估基于微生物的产品对土壤微生物组的功能和影响的方法,作为支持其使用和营销的工具。
摘要植物生长促进根瘤菌(PGPR)是在根际,土壤Sur圆形植物根中发现的一组有益细菌。这些细菌通过各种机制为增强植物生长提供了巨大的潜力。对PGPR至关重要的是具有不仅支持植物生长,而且保持生态友好的特定特征。考虑到农业中化学投入的使用增加,这一点尤其重要,这导致土壤中有害物质的积累,导致随着时间的推移生育率降低。在PGPR群中的各种细菌物种中,假单胞菌荧光症是众所周知且经过广泛研究的一种。研究人员已经对PGPR对植物生长的影响进行了研究,从实验室实验到延伸到温室试验。这些研究表明,PGPR作为生物肥料和生物农药的积极影响。已经探索了具有特定载体的PGPR菌株的配方,以有效地将细菌递送到土壤,然后将细菌传递给植物。这种制剂有可能减少农业实践中对化肥的依赖。一旦开发了PGPR的配方,它便可以用于市场,并容易为农场提供。这可以促进在农业地区促进有机或可持续的农业实践,从而减少对合成化学品的依赖并促进可持续的农业实践。
摘要:动物粪便的厌氧消化导致可再生能量(沼气)和富含营养的生物肥料的产生。该技术的进一步好处是减少了肥料储存过程中否则会发生的温室气体排放。由于动物粪便使厌氧的消化成本效益并进一步推进了较高甲烷产量的技术,因此最重要的是,要找到改善瓶颈的策略至关重要鸡肉,鸭子或猪粪。本综述总结了不同动物粪便的特征,并洞悉了潜在的微生物机制,从而导致厌氧消化过程引起挑战性问题。在高氨气过程中的保留时间和有机负荷速率放在了高氨气中的保留时间和有机负荷速率上,应设计和优化,以支持耐受高氨疾病的微生物,例如酸性乙酸乙酸替代性乙酸氧化细菌和氢蛋白毒素。此外,总结了用于稳定和增加动物粪便的甲烷产量的运营管理,包括支撑物质,添加微量元素或掺入氨去除技术。审查是最终的,讨论了概述动物粪便厌氧消化过程的可疑操作方法所需的研究,以规避过程不稳定性并改善过程性能。
文献表明,以生物甲烷为燃料的轻型车辆的生命周期成本可能比类似的汽油和柴油车辆高 15% 到 20%,而以液态生物甲烷为燃料的重型卡车的生命周期成本可能与柴油相似。然而,这种分析可能是二维的,并且其传达的信息有限。一方面,由于气候紧急情况和空气污染,柴油卡车和公共汽车的接受度将受到限制,并且在 2030 年以后柴油可能不再是生物甲烷的竞争对手。另一方面,生物甲烷生产是更大的循环经济、能源和环境系统的一部分。很难将能源载体生物甲烷与其生产系统分开。本质上,生物甲烷可以被视为广义沼气系统的产品或服务之一。沼气的一个优点是它可以从大多数湿有机废物或副产品中生产出来,包括食品废物、动物副产品(如粪肥)、农业残留物、污水污泥、工业生物废物(如来自屠宰场和食品和饮料加工行业的废物)。沼气生产是此类废物环境管理的一个要素;沼气厂还可以提供消化物,消化物含有原料中的大部分营养成分,可以成为极好的生物肥料。此外,还可以利用在将沼气升级为生物甲烷的过程中去除的二氧化碳作为具有附加值的产品。考虑到每年世界各地填埋的大量有机废物,生物甲烷资源非常重要,这些废物可以用来生产沼气、生物肥料和食品级二氧化碳,同时通过减少甲烷逸散排放和改善水质来改善环境。此外,在生物工业环境(如造纸厂、食品生产设施或其他类型的生物精炼厂)中应用沼气系统具有巨大的潜力,可以使工业脱碳,同时显著增加生物甲烷的资源。由于生物甲烷解决方案具有多种功能,因此在比较不同的技术时,需要广泛的评估方法来掌握广泛的相关因素:• 从整个生命周期分析来看,生物甲烷与化石燃料和其他生物燃料相比具有竞争力,特别适合长距离重型车辆。• 与其他可再生燃料相比,来自粪肥、残留物、废物和间作作物的生物甲烷估计具有较低的温室气体排放量。• 与柴油、汽油和其他生物燃料相比,生物甲烷可能有助于减少空气污染。• 与化石燃料相比,生物甲烷可以大大减少酸化。• 与柴油重型货车相比,生物甲烷可能有助于显著降低噪音水平。• 精心设计和应用的沼气系统可能对于将传统农业转变为更可持续的农业和有机农业至关重要。 • 常见类型的沼气解决方案作为废物和(废)水管理系统的组成部分,提供必要的社会技术系统服务。 • 沼气解决方案可能对改善能源供应/安全性和灵活性做出重要贡献。
第一单元:微生物(15 讲)病毒——发现、一般结构、复制(概述)、DNA 病毒(T 噬菌体);溶菌和溶原循环、RNA 病毒(TMV);经济重要性;细菌——发现、一般特征和细胞结构;类型——古细菌、真细菌和支原体。繁殖——营养、无性和重组(接合、转化和转导);经济重要性。第二单元:藻类(15 讲)一般特征;生态和分布;藻类组织和繁殖的范围;史密斯藻类分类;以下藻类的形态和生命周期:念珠藻、水绵、马尾藻和多管藻。藻类的经济重要性,特别涉及食品、生物肥料和医药。第三单元:真菌(15 讲)简介 - 一般特征、生态学和意义、叶状体组织范围、细胞壁组成、营养、繁殖、Ainsworth 分类和经济重要性(特别参考医学);根霉(接合菌门)、青霉(子囊菌门)和蘑菇(担子菌门)的生命周期;共生群落 - 地衣:一般说明、繁殖和意义;菌根:外生菌根和内生菌根及其意义。第四单元:苔藓植物(15 讲)一般特征、叶状体组织范围。Riccia、Anthoceros 和 Funaria 的 Smith 分类(直至科)、形态、解剖学和繁殖(不包括发育细节)。苔藓植物的生态学和经济重要性(特别提到泥炭藓)。建议阅读:
摘要:数十年来破坏自然资源的工业活动一直是环境破坏中最重要的因素之一。由于工业化,环境污染物成为生物圈最大的威胁之一。重金属,其中一种是这些环境污染物之一,已通过形成金属在水和土壤中的金属积聚而成为生物体的重大健康威胁。除了现有的研究人员外,大多数研究人员都认为,替代生物学过程非常需要用于控制重金属污染。生物修复是去除各种有毒污染物的过程,例如来自环境的重金属,尤其是在真菌和细菌微生物的帮助下,有时是植物和earth。在生物修复过程中使用细菌很普遍。在这项研究中,研究了从根和兰花植物的根部土壤和兰花植物中分离出的芽孢杆菌的金属耐受性和植物生长的特性。除了测试了两种细菌耐受铜,铅,铁,银和锌的能力,并确定其吲哚乙酸的产生(IAA),铁载体的产生,磷酸盐溶解度和氨基丙烷1-氯丙烷-1-羧酸盐 - 辅助酸酯 - 脱氨基氨基氨基酶(ACC-脱氨酸酶)的活性。这两个分离株对不同的pH水平,温度范围和金属浓度表现出很高的耐受性。结果表明,金属芽孢杆菌和苏云金分离株可用作金属污染土壤中的生物固定剂,并且由于其植物生长促进特性而被用作生物肥料。