人工智能 (AI) 曾经只是一些最受欢迎的科幻小说作家的幻想,但现在已在我们的日常生活中扎根。另一个成为现实的科幻小说幻想是物联网 (IoT),它是相互关联的计算设备、机械和数字机器、物体、动物或人的系统,它们具有唯一标识符 (UID),能够通过网络传输数据,而无需人与人或人与计算机的交互。物联网中的“物”可以是植入心脏监护仪的人、带有生物芯片转发器的农场动物、具有内置传感器以在轮胎气压低时提醒驾驶员的汽车,或任何其他可以分配 IP 地址并能够通过网络传输数据的自然或人造物体。
胰腺导管腺癌 (PDAC) 是胰腺最常见的肿瘤疾病,也是全球第四大癌症死亡原因。因此,迫切需要开发新的靶向疗法。该项目的目标是表征人类 3D PDAC 共培养模型平台中原代免疫细胞的浸润和极化,该平台具有集成的血管,以确定新的个性化治疗方法。3D 共培养物由来自患者原代材料的胰腺肿瘤细胞和星状细胞组成。类器官的生理营养供应和免疫细胞的浸润由生物芯片中由人类内皮细胞组成的血管模拟。
新型刺激和记录系统极大地促进了神经元和神经网络研究,这些系统通常使用采用先进电子技术(尤其是微纳米级 CMOS)制造的生物芯片。传感器和神经元活动记录所涉及的传导机制模型有助于优化传感设备架构及其与读出电路的耦合,以及解释测量数据。本文首先概述了最近发表的用于体外研究的采用现代(基于 CMOS)微纳米技术制造的集成有源和无源微纳米电极传感设备,然后介绍了一种混合模式设备电路数值分析多尺度和多物理场模拟方法来描述神经元传感器耦合,适用于得出有用的设计指南。从最相关的电气性能指标(包括信噪比)的角度更详细地分析了一些代表性结构和耦合条件。
在这个项目中,您将与一个多学科团队合作,该团队在神经科学、微电子学、化学和计算生物学方面拥有专业知识,结合 CMOS 生化传感器和神经形态工程的最新进展,开发第一个智能生物芯片,用于精确解释器官芯片平台中的类器官生化活动。您将研究用于读取微米级传感器阵列以进行电化学成像的新型超低功耗 IC,这些 IC 可以集成在一起,在微型化尺寸的类器官芯片中提供全面的电化学分析。读出电路将进行优化,以 (i) 提供干扰成分的可调压缩以提高测量分辨率,以及 (ii) 基于分布式事件的编码以提高后神经 AI 处理阶段的性能。
摘要:为了研究新化学和生物实体的生物分布,血脑屏障 (BBB) 的体外模型可能成为药物发现早期阶段的重要工具。在这里,我们展示了我们设计的内部三维 BBB 生物芯片的概念验证。这种三维动态 BBB 模型由内皮细胞和星形胶质细胞组成,它们在模拟血流的流动条件下共培养在聚合物涂层膜的相对两侧。我们的结果证明了 BBB 非常有效,证据是 (i) 跨内皮电阻 (TEER) 增加了 30 倍,(ii) 紧密连接蛋白的表达显著增加,以及 (iii) 与静态体外 BBB 模型相比,我们的技术解决方案具有较低的 FITC-葡聚糖渗透性。重要的是,我们的三维 BBB 模型有效地表达了 P-糖蛋白 (Pg-p),这是脑源性内皮细胞的标志性特征。总之,我们在此提供了一种完整的整体方法和对整个 BBB 系统的见解,可能在临床和制药领域带来转化意义。
摘要:血清学检验对于控制和管理Covid-19大流行至关重要(诊断和监测,以及流行病学和免疫学研究)。我们引入了一种直接的血清学生物传感器测定,该测定方法采用了基于等离子体学的专有技术,该技术可对严重急性呼吸道综合征2(SARS-COV-2)抗体的快速识别和量化临床样本中的急性急性呼吸综合征2(SARS-COV-2)抗体进行快速(<15分钟)的识别和量化。便携式等离子体设备采用定制设计的多蛋白(RBD肽和N蛋白)传感器生物芯片,并在使用多克隆抗体的低NG ML-1范围内达到检测限。它也采用了WHO批准的抗SARS-COV-2免疫球蛋白标准。具有COVID-19阳性和负样本的临床验证(n = 120)表明其出色的诊断敏感性(99%)和特定的牙齿(100%)。这将我们的生物传感器定位为一种准确且易于使用的诊断工具,用于在实验室和分散环境中使用疾病管理和评估疫苗接种或治疗期间的免疫学状况的快速可靠的Covid-19血清学。
近年来,能够引导细胞行为和形态的聚合物涂层引起了越来越多的关注。已知涂层特性(包括表面形态、表面结构和化学性质)会显著影响细胞粘附、定向、引导、分化、增殖和基因表达。[1–4] 此类涂层在生物传感器、生物芯片、药物输送装置、假体和植入物中也得到了有效应用。可以使用多种合成和天然来源的生物相容性聚合物。尽管合成聚合物在加工、稳定性和机械性能方面具有优势,但天然聚合物由于其生物活性、生物降解性和生物相容性而在许多应用中更受青睐。 [5– 6 ] 在天然聚合物中,壳聚糖是一种从几丁质中提取的线性多糖,由于其无毒、[7]可生物降解、[8]抗菌活性、[9]生物相容性[10]和免疫活性[11]等显著特性,已广泛应用于生物医学、环境和食品应用。此外,由于壳聚糖的可加工性,它可以设计成各种结构,包括薄膜、[12]膜、[13]微/纳米纤维、[14]绷带、[15]微/纳米颗粒[16]和水凝胶。[17]
NE 221 高级 MEMS 封装本课程旨在让学生为攻读 MEMS 和电子封装等更专业领域的高级课题做好准备,这些领域适用于各种实时应用,如航空航天、生物医学、汽车、商业、射频和微流体等。MEMS – 概述、小型化、MEMS 和微电子 -3 个级别的封装。关键问题,即接口、测试和评估。封装技术,如晶圆切割、键合和密封。设计方面和工艺流程、封装材料、自上而下的系统方法。不同类型的密封技术,如钎焊、电子束焊接和激光焊接。带湿度控制的真空封装。3D 封装示例。生物芯片/芯片实验室和微流体、各种射频封装、光学封装、航空航天应用封装。先进和特殊封装技术 - 单片、混合等、绝对压力、表压和差压测量的传感和特殊封装要求、温度测量、加速度计和陀螺仪封装技术、MEMS 封装中的环境保护和安全方面。可靠性分析和 FMECA。媒体兼容性案例研究、挑战/机遇/研究前沿。NE 235 微系统设计和技术
摘要:表面等离子体,连续和累积的电子振动构成了金属介电界面,在汇总纳米结构上的光界和能量方面起着关键作用。这种结论利用了其空间效果的内在次波长性质,显着增强了光 - 代言的相互作用。金属,半导体和2D材料在各种波长处表现出等离子体共振,从紫外线(UV)到远红外,由它们的独特特性和结构决定。表面等离子体为各种光 - 物质相互作用机制提供了一个平台,并利用了等离子结构内电磁场的高度增强。通过理论,计算和实验研究证实了这种增强。在这项全面的综述中,我们深入研究了基于金属和超材料的传感器的等离子体增强过程,考虑了诸如几何影响,谐振波长,化学特性和计算方法之类的因素。我们的探索扩展到实用应用,包括基于局部的表面等离子体共振(LSPR)的平面波导,基于聚合物的生物芯片传感器和基于LSPR的纤维传感器。最终,我们旨在为开发下一代,高性能等离子技术设备提供见解和指南。
