摘要:上一届政府间气候变化专门委员会 (IPPC) 评估报告强调,减少二氧化碳排放的行动迄今为止未能有效实现 1.5 C 限制,需要采取激进措施。废弃生物质的升级、电力到 X 范式和氢等创新能源载体等解决方案可以为向低碳能源系统的过渡做出有效贡献。在此背景下,本研究的目的是通过研究厌氧消化与热化学转化过程的创新整合优势来改进湿残余生物质的氢气生产过程。此外,该解决方案集成到由电网和光伏电站 (PV) 组成的混合电源中,并由热能存储 (TES) 系统提供支持。通过 Simulink/Simscape 模型仔细评估了工厂的性能及其输入能源需求(将电力需求分为光伏系统和国家电网)。初步评估显示,该工厂的氢气产量表现良好,达到 5.37% kg H2 /kg 生物质,远高于单一工艺的典型值(约 3%)。这一发现表明生物和热化学生物质增值路线之间存在良好的协同作用。此外,热能存储显著提高了转化工厂的独立性,几乎将电网的能源需求减少了一半。
“边缘未达标地区”是指美国环境保护署 (EPA) 对未达到地面臭氧国家环境空气质量标准 (NAAQS) 的地区的分类。这些地区的分类基于它们超过标准的程度以及需要改进的程度。 边缘未达标地区是最接近达标地区的最不严重的分类。这些地区通常有三年的时间来达到空气质量标准,而无需实施重大的新控制措施。与臭氧问题更严重的地区相比,边缘地区对实现达标的规划和控制措施的要求不那么严格。
摘要:塑料在现代生活中发挥着重要作用,目前塑料回收利用的发展要求很高且具有挑战性。为了缓解这一困境,一种选择是开发在整个材料生命周期中与环境兼容的新型可持续生物塑料。我们报道了一种由天然 DNA 和生物质衍生的离子聚合物制成的可持续生物塑料,称为 DNA 塑料。可持续性涉及 DNA 塑料的生产、使用和报废选择的所有方面:(1)原材料来自生物可再生资源;(2)水处理策略对环境友好,不涉及高能耗、使用有机溶剂和产生副产物;(3)实现可回收和非破坏性利用,显着延长塑料的使用寿命;(4)废塑料的处理遵循两条绿色路线,包括废塑料的回收利用和温和条件下酶引发的可控降解。此外,DNA塑料可以“水焊接”成任意设计的产品,例如塑料杯。这项工作提供了一种将生物基水凝胶转化为生物塑料的解决方案,并展示了DNA塑料的闭环回收,这将推动可持续材料的发展。■ 简介
4 本研究组的编制指南、《国防计划指南》和《中期国防发展计划》中使用了“国防生产和技术基础的维护和发展”一词,但术语“由于内阁官房长官关于“向海外转让设备等的标准”的声明中使用了“维护和改进”一词,因此本报告使用表达“维护、开发和进步”。使用
该信息将发布在阪神医院网站(合同信息)(https://www.mod.go.jp/gsdf/mae/hosp/fin.html)和阪神自卫队医院会计部办公室。但是,如果您希望在会计部门办公室查看文件,您可以在工作日上午 8:15 至下午 5:00 之间进行查看。 4.说明会及投标实施的日期、时间和地点说明会的日期、时间和地点:未举行。 竞标日期和时间:2022年7月13日星期三上午10:00
此外,如上所述,在“气化发电系统研究”项目中,该团队成功将水分含量极高的食品垃圾碳化并制成颗粒,这在研究开始时是没有预料到的。这使得该研究成果被扩大为环境省项目,并开启了该研究开发的技术不仅可用于受灾地区,还可用于世界各地的民间领域的可能。 另一方面,即使生成的气体中含有约1至2g/Nm3的微量焦油,这种情况以前从未被报道过,但通过连续运行气化炉100小时首次发现,各设备中的焦油累积问题在运行约50小时后变得明显。此外,还首次发现,炭素颗粒成型时添加的粘合剂会导致颗粒气化时焦油生成量增加,为今后设备长期稳定运行明确了对策和课题。这是一项无法通过设施短期运行来确定的重大成果,并将成为未来研发的指导方针。 1.4 论文、专利、学术演讲等研究成果 本研究成果已在知名英文期刊上发表两篇学术论文(影响因子=7.182),两篇论文(影响因子=4.601),一篇论文(影响因子=3.091)。 另外,曾担任博士后研究员的陆丁博士在任职期间发表了三篇学术论文,目前他已转行,正在根据这项研究的成果撰写学术论文。该研究项目对年轻研究人员的培养做出了很大的贡献。 此外,根据这项研究的结果,我们提交了一份专利申请,如附录 3 所示。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
© 高等教育出版社 2023 当今世界正面临许多危机,包括气候变化、环境污染、资源稀缺和资源消耗猖獗。为了解决这些问题,有必要寻求低碳、环保和成本效益高的解决方案。解决这些挑战的一个有希望的途径是使用生物质基材料,这种材料具有许多独特的优势,包括可再生性、可生物降解性和丰富性。先进的生物质材料已经在各种应用中尝试用于解决全球问题,例如能源危机、环境污染和资源短缺。在本期特刊中,我们的目标是提高研究人员对生物质基材料领域的关注和兴趣,并促进先进生物质材料科学和技术的发展。这些先进的生物质基材料是传统石化材料的可持续替代品。通过促进对先进生物质基材料的研究,本期特刊旨在推进跨学科研究的前沿,并为更可持续的未来铺平道路。本期特刊有助于我们了解基于纤维素、木质素和其他生物质的先进功能材料。为了更好地说明针对性,将出版两期(第17卷第7期和第8期)。研究论文展示了这些材料的合成、改性、性能、功能以及在能源、环境和其他新兴领域的潜在应用,强调了它们在应对紧迫的全球挑战中的重要性。综述探讨了纤维素在低介电常数绝缘纸和锂离子电池中的作用,以及离子液体在生物质基材料合成和应用中的潜在优势。在能源存储和转换领域,先进的生物质材料在解决材料和设备层面的挑战方面发挥了关键作用。纤维素基聚合物电解质复合材料是一种能很好地保持形状的材料。当与纳米碳材料结合时,它们表现出良好的封装性能和更高的热能存储能力。通过烷基链桥接将酚羟基引入木质素磺酸盐(LS),再将改性后的LS掺杂到PEDOT中,可以增强PEDOT的电子传输能力。采用磷酸盐辅助水热法制备的木质素多孔碳可作为超级电容器电极,具有较高的比电容和良好的循环性能。采用一步“浸渍聚合”法制备了聚吡咯(PPy)与纤维素纳米纤维(CNF)的复合薄膜电极,纤维素微纤维和纳米纤维在锂离子电池中的应用,综述了纤维素微纤维和纳米纤维在高能量密度电池中的应用,并介绍了用于高能量密度电池的高质量负载纸电极的新发展趋势和最新进展与方法。
通常,这些本地实例不是在生产中部署或远程部署的完全特色版本。较小的模型,例如7或80亿个参数实例,可用于管道和参数调整以及快速周转。这些实例与更大的漏洞相同。同样,在较小的模型上开发不足,然后在较大模型上部署,不仅不仅执行针对它们的完整测试套件,而且还针对较大模型的功能进行了特定的测试。分析和攻击表面评估测试也是强制性的。这意味着测试套件应是模型大小和部署目标的函数。
各种生物量废物的可用性以及针对森林砍伐的严格规则导致了颗粒板开发中废物生物量的利用增加。如果无法正确管理,这些生物量废物会变成环境污染物。因此,它们在开发刨花板中的利用有助于实现可持续的环境,这是联合国可持续发展目标之一。这项研究回顾了来自稻壳,木屑,玉米棒,甘蔗渣,燕麦酱,燕麦壳,椰子纤维,槟榔,黑麦稻草,番茄,番茄粉,榛子,榛子和Castor husk等生物质量废物的一些生产技术。对使用扫描电子显微镜的发达颗粒板的特性(物理,机械,化学和热的)和显微结构进行了严格审查。密度值用于将颗粒板分类为低密度,中密度和高密度颗粒板。使用吸水和厚度肿胀值确定颗粒板的耐用性,存放性和尺寸稳定性。弹性和破裂模量的模量有助于确定按照适当标准的颗粒板的质量和适用性。较低的热导率表示更好的绝缘性能。陈述了刨花板生产和利用的挑战和前景。废物生物量用于颗粒板生产是可持续的,以防止环境污染和森林砍伐。