关岛权力管理局(GPA)是关岛政府的公共事业和自治机构。GPA产生,分发和出售零售电力,但一直在远离拥有一代,而是选择与独立的电力生产商合同以操作和维护新的化石燃料和可再生能源电厂的设施。GPA为近58,000名客户提供服务,美国海军是最大的单一客户,占关岛能源负载的20%,这一数字正在迅速增长。关岛的电力成本几乎是美国全国平均水平的两倍,尽管比太平洋的其他岛屿要低一些。2022年的平均零售电力成本接近0.35美元/千瓦时,其中包括燃料附加费,可以根据市场燃料价格每六个月进行一次调整。
Figure 1 Work breakdown Structure (WBS) for the Biodegradable Mulch Films (BDM) development ............................................................................................................................... 2 Figure 2: (a) Representation of benefits and pollution problems associated with mulches from conventional plastics; (b)对2025年从非洲进入海洋的陆基塑料废物的预测-Jambeck等人,2018年,估计估计到2025年,塑料的10.5 mton将进入海洋,其中尼日利亚是最大的污染者)............................................................................................................................................................................................................................................................................................................................................................................................................................................. Agricultural Mulch Films Volume (%), Geography, Africa, 2021 estimates ................ 6 Figure 5: Material types currently used in the agricultural films in Africa ................................... 7 Figure 6: Vale chains of mulch films .......................................................................................... 9 Figure 7: Value chain point indicating GHG reduction potential of BDMs over conventional plastic mulches ......................................................................................................................... 11 Figure 8: Factors Limiting BDM market in Nigeria ................................................................... 13 Figure 9: Market share of the major players in Nigeria ............................................................ 15 Figure 10: Market Segments, crop type under mulches.......................................................... 15 Figure 11: Nigerian starch Market Size in thousand metric ton, 2016-2026.[source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027)...................... 2 Figure 12: Volume share (%) by type of starch, 2021, Nigeria [source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027) ......................................... 2 Figure 13: Market Share (%), by Application, Nigeria, 2021。Source: Mordor Intelligence Custom Report on Nigeria Industrial .......................................................................................... 3 Figure 14: Sources of starches in Nigeria, as of 2021.Source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027) ...................................................... 3 Figure 15: World regional share of cassava production ............................................................ 4 Figure 16: Cassava production by the ten top countries (FAOSTAT-2020) .............................. 5 Figure 17: Production of cassava in Nigeria per State............................................................... 5 List of Tables
本综述探讨了蟹壳衍生的外骨骼材料(特别是几丁质和壳聚糖)在骨科植入物设计中的创新应用。医疗应用对可持续、生物相容性和机械强度材料的迫切需求指导了这项全面的分析。我们评估了蟹壳衍生物的机械性能,强调了其足够的强度和耐用性,这对于成功的骨科应用至关重要。本研究还评估了这些材料的生物降解性,这一特性因其有可能最大限度地减少长期身体影响并减少二次手术的需要而脱颖而出。与金属和陶瓷等传统植入物材料进行了比较分析,以强调蟹壳衍生的生物聚合物的优势和当前的局限性。本综述涵盖了最近的案例研究和设计创新,包括 3D 打印等先进制造技术,这些技术可以将这些生物聚合物整合到未来的骨科解决方案中。最后,我们讨论了必须解决的持续挑战和研究差距,以充分利用这些生物材料在临床环境中的潜力。本文旨在向研究人员和从业人员介绍蟹壳衍生材料的光明前景,倡导继续研究和开发这一有前景的骨科植入物技术领域。
3.10.1 斯里兰卡正在使用的常规产品 ...................................................................................................... 32 3.10.2 世界各地的类似产品 ................................................................................................................ 34 3.10.3 战略和运营规划 ................................................................................................................ 35 3.10.4 变革理论 ................................................................................................................................ 37 3.10.5 利益相关者分析 ............................................................................................................................. 37
摘要。这篇关键评论探讨了可生物降解的聚合物生物材料在组织工程中的应用,从而强调了它们革命性的再生医学和组织替代品的潜力。可生物降解的聚合物由于它们模仿细胞外基质的能力,因此为开发组织支架的发展提供了一种可持续的替代方法,该替代品以与新组织形成相匹配的速率降解。本综述系统地涵盖了这些材料的演变,类型和应用,以解决自然和合成聚合物。特别注意制造技术,以及3-D生物打印和纳米制作,从而引入了针对独特的组织工程包装量身定制的脚手架。评估讨论了当代苛刻的情况,以及机械性能和生物降解性之间的平衡,以及脚手架与宿主组织的混合。此外,它会深入研究未来的方向,包括杂交生物材料的发展以及生物活性分子的掺入以增强组织再生。可生物降解的聚合物生物材料的进步构成了朝着开发更有效和个性化的组织工程过程的方向迈出的巨大步骤。
值是 n (%) 或中位数(第一四分位数-第三四分位数)。ACS,急性冠状动脉综合征;ARC;学术研究联盟,CABG;冠状动脉搭桥手术,CCS;慢性冠状动脉综合征,HBR;高出血风险,H2 阻滞剂;组胺 2 型受体拮抗剂,eGFR;估计肾小球滤过率,MI;心肌梗死,NSTEMI;非 ST 段抬高型心肌梗死,PCI;经皮冠状动脉介入治疗,P-CAB;钾竞争性酸阻滞剂,PPI;质子泵抑制剂,STEMI;ST 段抬高型心肌梗死
摘要:使用可生物降解的纤维作为常规聚光纤维的替代品已成为对抗农业白人污染的重要技术。解决了基于PBAT的可生物降解膜的拉伸强度,水蒸气屏障特性和降解期的缺点,该研究旨在创建一个可以改善PBATFIM的多样性的复合纤维。为此,研究引入了PBAT/PLA-PPC-PTLA三元混合系统。该系统将PBAT与PLA和PPC有效融合,这是通过电子显微镜测试证明的,表现出在混合纤维的表面和横截面上没有明显的缺陷。与纯PBAT可生物降解纤维相比,开发的三元混合系统的拉伸强度提高了58.62%,水蒸气屏障特性增强了70.33%,功能时期的扩展为30天。玉米作物的现场实验表明,经过改进的可生物降解膜更适合农业生产,因为它改善了热绝缘和湿度的保留,导致玉米产量增加了5.45%,接近传统的聚油管的产量。
1 State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China 2 Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA 3 Plasticentropy, rue Thiers 28, Reims 51100, France 4 Department of Entomology and Department of Osteopathic Medical Specialties, Michigan州立大学,东兰辛,密西西比州48824,美国5环境研究学院科钦科学技术大学,高知,高知682022,印度6号,6682022,682022,北北部科学与技术大学化学工程系,波港科学与技术大学,韩国共和国7673,韩国环境科学与工程学院7中国9号生态与环境科学学院北京有限公司,东中国师范大学,上海,200241年,中国10,北京大学研究所,北京大学,北京100191,中国环境学院11,北京大学环境学院
农业的可持续性强化是全球粮食安全战略的重要组成部分,旨在产生高农作物产量,并产生最小的环境影响(Garnett等人,2013年;联合国,2015年)。未来的粮食系统需要保护或改善土壤健康和生育能力,这是由有效的营养管理为最大程度地减少造成异地污染的土壤损失的基础(Foley等,2011; Steffen et al。,2015; 2015; United;联合国,2019年)。氮(N)引起了人们的关注,因为土壤中的N损失引起了深刻的环境问题,并提出了路线图来提高n在种植中的N使用效率(Udvardi等,2021)。在热带地区,土壤和气候条件下加剧了有效的肥料使用的挑战,因为土壤可以高度风化,肥料养分不那么良好(Baligar&Bennett,1986),温暖的温度加速了土壤有机物和微生物养分的损失(Stanford et and-nutentiers rain。 (Bouwman,1998; Seyfried&Rao,1987)。
可生物降解的纳米材料可以显着改善纳米医学的安全性。锗纳米颗粒(GE NP)是作为生物医学应用的有效光热转化器而开发的。ge NP由飞秒激光在液体中合成的液体通过氧化机制迅速溶解在生理样环境中。GE纳米颗粒的生物降解在体外和正常组织中保存在半衰期短达3.5天的小鼠中。GE NP的生物相容性通过血液学,生化和组织学分析在体内确定。在近红外光谱范围内GE的强烈光吸收可在静脉注射GE NP后对体内植入的肿瘤进行光热治疗。光热疗法导致EMT6/P腺癌肿瘤生长的3.9倍降低,而小鼠的存活显着延长。在纳米材料的静脉内和肿瘤内施用后,GE NP(808 nm处的7.9 L G - 1 cm-1)的出色质量渗透使骨骼和肿瘤具有光声成像。因此,强烈吸收近红外的生物降解纳米材料对晚期治疗学有希望。
