野生生菜(Lactuca Aff。Canadensis L.)属于Asteraceae家族,是在巴西进行的,可能起源于非洲,亚洲,欧洲和北美。普遍称为加拿大生菜,是一种非常规的绿叶蔬菜。对该物种的研究在巴西很少,其科学名称在专家之间进行了辩论。它具有很高的形态变异性和有争议的植物分类。这项研究表征了气孔,组织了核型,并确定了四种野生生菜形态型的核DNA含量,以促进正确的分类。使用的遗传物质是从UFLA中的非规定蔬菜种质中获取的。野生生菜形态型的叶子是最不受欢迎的,在弱点表皮中有更多的气孔。在形态型(绿色和紫色)之间以及光滑的紫色类型(狭窄的叶子和宽叶)之间存在相似之处。在四种形态型中的染色体数量(2n = 18)或DNA含量中没有发现变化。野生生菜的形态的分离与形态学分类或核学数据不符。评估的四种形态型被放置在同一物种下,与其他研究相比,获得的结果导致我们推断出野生乳酸的四种形态型属于该物种L. indica l。进一步的研究可以提供对该物种进化史的见解。
本文对心脏淀粉样变性(CA)的几个超声心动图发现的诊断值进行了批判性综述。考虑到其具有挑战性的诊断以及临床医生对高度怀疑的高指数的需要,强调了对CA的早期和准确检测的重要性。超声心动图通常是怀疑CA时心脏结构和功能成像评估的首选。本文涵盖了几种常规的超声心动图特征和斑点跟踪超声心动图 - 派生的变形参数。其中一些索引分组在一起以形成分数,这可以提高诊断Ca的准确性。,特别是在较早的阶段,超声心动图具有较低的特异性,可以区分淀粉样蛋白和其他肥厚的表型,强调与临床危险信号,实验室测试和其他心脏成像方式相关的需求。
摘要:氮 (N) 是大多数农业生态系统中限制植物生长的生态因素。近几十年来,生物固氮,尤其是来自结瘤豆科植物的固氮,已被推广为工业合成氮肥的替代品或补充。利用叶际固氮生物对多种作物都具有效果的可能性尤其令人兴奋。在本研究中,我们研究了最近投放市场的一种接种剂的固氮能力及其对生菜生长的影响,该接种剂含有微生物共生甲基杆菌,推荐用于各种栽培品种。采用因子设计进行了盆栽试验,包括接种剂(否和是)和四种氮施用率(0 (N0)、25 (N25)、50 (N50) 和 100 (N100) kg ha −1 N),在四个生菜生长周期内重复四次。接种剂仅在四个生长周期中的第二个周期对干物质产量 (DMY) 有显著影响。在四个生长周期中,接种和未接种接种剂的盆中,平均值分别为 9.9 至 13.7 g pot −1 和 9.9 至 12.6 g kg −1 。另一方面,植物对施入土壤的氮表现出强烈的反应,在所有生长周期中 DMY 和组织氮浓度都显著增加。处理 N0 和 N100 中 DMY 的平均值分别为 5.6 至 8.9 g pot −1 和 12.5 至 16.1 g pot −1 。组织中的氮浓度与 DMY 成反比,表明存在浓度/稀释效应。用以估计固定氮的经处理和未处理植物之间的氮浓度差异对于每种土壤的施氮率来说都非常小,假设四个生长周期的平均值分别为 N0、N25、N50 和 N100 的 -1.5、-0.9、2.4 和 6.3 kg ha -1。这项研究强调了接种剂提供给生菜的氮量低及其对 DMY 的影响有限。通常,在具有固氮微生物的生物系统中,要实现高固定率需要微生物和宿主植物之间具有高度的特异性,而生菜似乎并不满足这一条件。考虑到这个课题的重要性,必须进行进一步研究,以更准确地确定在哪些作物和在什么样的生长条件下接种剂被证明是农民的宝贵投入和减少氮矿物施肥的有效方法。
绿叶蔬菜(新鲜)包括所有类型的新鲜绿叶蔬菜。示例包括但不限于芝麻菜,叶叶,黄油生菜,木糖,菊苣,野生,埃斯塔尔,绿叶,绿叶,冰山生菜,羽衣甘蓝,红叶,pak choi,romaine,sorraine,sorrel,sorrel,菠菜和植物。不包括整个头卷心菜,例如绿白菜,红卷心菜或Savoy Cabbage。不包括香蕉叶,葡萄叶和在树上生长的叶子。§112.2(a)(1)中列出的绿叶绿色,例如collards,不受第§1.1305(e)条规则的要求。
关键信息来自多种来源物种的 GRF-GIF 嵌合蛋白可增强野生和栽培生菜的体外再生。此外,它们还可增强多种生菜的再生,包括奶油生菜、长叶莴苣和卷叶莴苣。摘要植物体外再生的能力已被用于组织培养系统中的植物繁殖、植物转化和基因组编辑。体外再生的成功通常取决于基因型,并且仍然是农杆菌介导的转化及其在某些作物品种改良中的应用的瓶颈。操纵在植物发育中起关键作用的转录因子,如 BABY BOOM、WUSCHEL 和生长调节因子 (GRF),已经提高了多种植物的再生和转化效率。在这里,我们比较了来自多个物种的 GRF–GIF 基因融合对提高四种野生和栽培莴苣(Lactuca spp. L.)基因型的再生效率和发芽频率的效果。此外,我们表明,与对照相比,具有突变 miRNA 396 结合位点的 GRF–GIF 可提高再生效率和发芽频率。我们还提出了一种共转化策略,以提高转化效率和恢复含有目的基因的转基因植物。该策略将增强其他莴苣基因型和菊科其他作物的转基因植物的恢复。
利用雄性不育性进行 F 1 杂交的新育种方法将为自花授粉作物莴苣育种开辟一个令人兴奋的新领域。雄性不育性是 F 1 杂交育种的一个关键性状。绘制利用雄性不育性的致病基因图谱至关重要。“CGN17397”的 ms-S 雄性不育 (MS) 基因通过 ddRAD-seq 定位到连锁群 (LG) 8,并使用两个 F 2 群体将其缩小到两个标记之间。该区域跨越约 10.16 Mb,其中根据莴苣参考基因组序列(版本 8 来自“Salinas”)注释了 94 个基因。 MS 系“CGN17397-MS”和雄性不育 (MF) 系“CGN17397-MF”的全基因组测序表明,只有一个基因在 Lsat_1_v5_gn_8_148221.1 区域有所不同,该基因是酰基辅酶 A 合成酶 5 (ACOS5) 的同源物,并且在 MS 系中被删除。据报道,ACOS5 是花粉壁形成所必需的,并且 ACOS5 的无效突变体在某些植物中完全是雄性不育的。因此,我得出结论,指定为 LsACOS5 的 Lsat_1_ v5_gn_8_148221.1 是 ms-S 基因座的生物学上合理的候选基因。利用 LsACOS5 的结构多态性,开发了 InDel 标记来选择 MS 性状。这里获得的结果为生菜的基因雄性不育提供了有价值的信息。
在几种值得注意的情况下,反复强调了在复杂食物链中跟踪产品的困难。2018年大肠杆菌爆发蔓延的一个核心问题是生菜的可追溯性,这是通过灌溉系统污染的。发现问题的根源是具有挑战性的,因为许多污染的成品生菜产品都包含来自多个来源的romaine。此外,调查期间收集的大多数记录都是手写的。这对可追溯性努力构成了严重的挑战;敦促企业探索标准化记录保存的调制解调器方法,并在产品包装上使用标签以提高可追溯性。令人震惊的是,所有全球食品公司中有90%是中小型企业(S:RVFFIS),并且大多数不遵循国际标准。绝大多数使用基于纸的表格来运行其质量系统。
未来在太空中的作物生产将需要强大的监测技术,以优化农作物产量,减少废物并生成自动化植物生长设计的数据。成像被认为是测量植物健康的工具,但是尚未在太空飞行中测试室内作物的成像系统。幸运的是,已经捕获了ISS上高级植物栖息地(APH)内生长的作物植物的RGB图像。在基于地面的研究中,肯尼迪航天中心(NASA,KSC)正在与美国农业部(USDA ARS)合作,以开发一种用于监测室内农作物植物健康状况的成像系统。在一项研究中,我们在14天的时间内将干旱应力应用于“龙龙”生菜植物,并以24小时的增量捕获了RGB图像。图像,并应用差异指数,可以使用图像来检测生菜中的干旱应激。然后将此差异指数应用于APH地面单元内收集的RGB图像,以在不同的底物水分条件下进行飞行前的实验,并在不同的底物水分条件下生长出“超湿”生菜,结果表明,RGB摄像机能够检测到太空飞行植物生长硬件内的干旱应力。这些结果表明,已经部署到太空的RGB摄像机可能会提供有价值的信息,以监视外星环境中的植物生产。这项研究得到了NASA的太空生物学计划的支持。
● 1 种绿叶蔬菜 - 绿叶蔬菜(羽衣甘蓝、芥菜、芜菁)、甘蓝、生菜(任何品种)或菠菜 ● 1 种洋葱 ● 3 种水果 - 香蕉、苹果和橙子是最常见 ● 1 种淀粉类蔬菜 - 土豆、玉米或芜菁 ● 根据价格选择其他 6 种水果和蔬菜